|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
A. M. Il'yasov, V. N. Kireev, “Unsteady flow in a reservoir with a main fracture crossing an injection or production well”, Prikl. Mekh. Tekh. Fiz., 64:5 (2023), 124–138 ; J. Appl. Mech. Tech. Phys., 64:5 (2024), 840–852 |
|
2019 |
2. |
A. M. Il'yasov, T. F. Kireev, G. T. Bulgakova, “Simulation of strength of waterproof barriers in porous forms”, Prikl. Mekh. Tekh. Fiz., 60:5 (2019), 184–193 ; J. Appl. Mech. Tech. Phys., 60:5 (2019), 940–948 |
3. |
A. M. Il'yasov, T. F. Kireev, G. T. Bulgakova, “Strength assessment for water shut-off baffles in a fractured medium”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 62, 91–104 |
|
2018 |
4. |
A. M. Il'yasov, G. T. Bulgakova, “Modeling of the establishment and stability of gel barriers in main cracks”, Prikl. Mekh. Tekh. Fiz., 59:2 (2018), 198–208 ; J. Appl. Mech. Tech. Phys., 59:2 (2018), 359–367 |
4
|
|
2017 |
5. |
A. M. Il'yasov, “A new approach to the hydraulic fracture geometric dimensions determination”, Proceedings of the Mavlyutov Institute of Mechanics, 12:1 (2017), 126–134 |
6. |
A. M. Il'yasov, “Strength evaluation of a cement ring adjacent to a production well bore”, Prikl. Mekh. Tekh. Fiz., 58:1 (2017), 210–217 ; J. Appl. Mech. Tech. Phys., 58:1 (2017), 182–187 |
1
|
|
2016 |
7. |
A. M. Ilyasov, G. T. Bulgakova, “Modeling of viscous fluid flow in the vertical main fracture with permeable walls”, Matem. Mod., 28:7 (2016), 65–80 |
1
|
8. |
A. M. Il'yasov, G. T. Bulgakova, “The quasi-one-dimensional hyperbolic model of hydraulic fracturing”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:4 (2016), 739–754 |
8
|
|
2013 |
9. |
A. M. Ilyasov, “Optimal system of Lie algebra subalgebras of the point symmetries group for nonlinear heat equation without source”, Ufimsk. Mat. Zh., 5:3 (2013), 54–66 ; Ufa Math. J., 5:3 (2013), 53–66 |
2
|
|
2005 |
10. |
A. M. Il'yasov, K. V. Moiseev, S. F. Urmancheev, “Numerical simulation of thermoconvection in a liquid for the case when viscosity is a quadratic function of temperature”, Sib. Zh. Ind. Mat., 8:4 (2005), 51–59 |
5
|
|
Organisations |
|
|
|
|