Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Recke, Lutz

Statistics Math-Net.Ru
Total publications: 6
Scientific articles: 5

Number of views:
This page:151
Abstract pages:1477
Full texts:431
References:255
E-mail:

https://www.mathnet.ru/eng/person25217
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/237417

Publications in Math-Net.Ru Citations
2018
1. V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Existence, asymptotics, stability and region of attraction of a periodic boundary layer solution in case of a double root of the degenerate equation”, Comput. Math. Math. Phys., 58:12 (2018), 1989–2001  mathnet  isi  elib  scopus 3
2016
2. D. V. Lukyanenko, V. T. Volkov, N. N. Nefedov, L. Recke, K. Schneider, “Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes”, Model. Anal. Inform. Sist., 23:3 (2016),  334–341  mathnet  mathscinet  elib 9
3. V. F. Butuzov, N. N. Nefedov, L. Recke, K. Schneider, “Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation”, Model. Anal. Inform. Sist., 23:3 (2016),  248–258  mathnet  mathscinet  elib; Automatic Control and Computer Sciences, 51:7 (2017), 606–613 4
2006
4. N. N. Nefedov, O. E. Omel'chenko, L. Recke, “Stationary internal layers in a reaction-advection-diffusion integro-differential system”, Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006),  624–646  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 46:4 (2006), 594–615  scopus 1
2003
5. J. Sieber, L. Recke, K. R. Schneider, “Dynamics of Multisection Semiconductor Lasers”, CMFD, 2 (2003),  70–82  mathnet  mathscinet  zmath; Journal of Mathematical Sciences, 124:5 (2004), 5298–5309 4

2010
6. N. N. Nefedov, L. Recke, K. R. Schneider, “Asymptotic stability via the Krein–Rutman theorem for singularly perturbed parabolic periodic Dirichlet problems”, Regul. Chaotic Dyn., 15:2-3 (2010),  382–389  mathnet  mathscinet  zmath 7

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024