Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2016, Volume 23, Number 3, Pages 334–341
DOI: https://doi.org/10.18255/1818-1015-2016-3-334-341
(Mi mais503)
 

This article is cited in 9 scientific papers (total in 9 papers)

Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes

D. V. Lukyanenkoa, V. T. Volkova, N. N. Nefedova, L. Reckeb, K. Schneiderc

a Lomonosov Moscow State University, 119991, Moscow, Leninskie Gory, MSU, Faculty of Physics,
b HU Berlin, Institut für Mathematik, Rudower Chaussee, Berlin, Germany
c Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
Full-text PDF (183 kB) Citations (9)
References:
Abstract: The main objective of the paper is to present a new analytic-numerical approach to singularly perturbed reaction-diffusion-advection models with solutions containing moving interior layers (fronts). We describe some methods to generate the dynamic adapted meshes for an efficient numerical solution of such problems. It is based on a priori information about the moving front properties provided by the asymptotic analysis. In particular, for the mesh construction we take into account a priori asymptotic evaluation of the location and speed of the moving front, its width and structure. Our algorithms significantly reduce the CPU time and enhance the stability of the numerical process compared with classical approaches.
The article is published in the authors' wording.
Keywords: singularly perturbed parabolic periodic problems, interior layer, Shishkin mesh, dynamic adapted mesh.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00755_а
14-01-00182_а
16-01-00437_а
14-01-91333_ННИО_а
This work was supported by RFBR, projects No. 16-01-00755, 14-01-00182, RFBR, project No. 16-01-00437, RFBR - DFG, project No. 14-01-91333.
Received: 20.05.2016
Bibliographic databases:
Document Type: Article
UDC: 519.956
Language: English
Citation: D. V. Lukyanenko, V. T. Volkov, N. N. Nefedov, L. Recke, K. Schneider, “Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes”, Model. Anal. Inform. Sist., 23:3 (2016), 334–341
Citation in format AMSBIB
\Bibitem{LukVolNef16}
\by D.~V.~Lukyanenko, V.~T.~Volkov, N.~N.~Nefedov, L.~Recke, K.~Schneider
\paper Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of~dynamic~adapted meshes
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 3
\pages 334--341
\mathnet{http://mi.mathnet.ru/mais503}
\crossref{https://doi.org/10.18255/1818-1015-2016-3-334-341}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3520855}
\elib{https://elibrary.ru/item.asp?id=26246299}
Linking options:
  • https://www.mathnet.ru/eng/mais503
  • https://www.mathnet.ru/eng/mais/v23/i3/p334
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024