|
|
Publications in Math-Net.Ru |
Citations |
|
2008 |
1. |
Yu. D. Churbanov, “Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 8, 43–57 ; Russian Math. (Iz. VUZ), 52:8 (2008), 35–47 |
3
|
|
2002 |
2. |
Yu. D. Churbanov, “Geometry of homogeneous $\Phi$-spaces of order 5”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 5, 70–81 ; Russian Math. (Iz. VUZ), 46:5 (2002), 68–78 |
7
|
|
1994 |
3. |
Yu. D. Churbanov, “Geometry of special affinor structures of homogeneous $\Phi$-spaces of odd order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 2, 84–86 ; Russian Math. (Iz. VUZ), 38:2 (1994), 82–84 |
3
|
|
1992 |
4. |
Yu. D. Churbanov, “Some classes of homogeneous $\Phi$-spaces of order 5”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2, 88–90 ; Russian Math. (Iz. VUZ), 36:2 (1992), 88–90 |
5
|
|
1990 |
5. |
Yu. D. Churbanov, “Induced connections on regular $\Phi$-spaces and their subspaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 1, 72–80 ; Soviet Math. (Iz. VUZ), 34:1 (1990), 84–92 |
6. |
V. V. Balashchenko, Yu. D. Churbanov, “Invariant structures on homogeneous $\Phi$-spaces of order 5”, Uspekhi Mat. Nauk, 45:1(271) (1990), 169–170 ; Russian Math. Surveys, 45:1 (1990), 195–197 |
12
|
|
1989 |
7. |
Yu. D. Churbanov, “$\Phi$-spaces and their subspaces that allow invariant framings”, Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 7, 46–52 ; Soviet Math. (Iz. VUZ), 33:7 (1989), 60–69 |
|
Organisations |
|
|
|
|