Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 8, Pages 43–57 (Mi ivm1679)  

This article is cited in 3 scientific papers (total in 3 papers)

Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces

Yu. D. Churbanov

Belarusian State University, Minsk, Belarus
Full-text PDF (249 kB) Citations (3)
References:
Abstract: We study the connection between the Lie bracket on the tangent space of homogeneous periodic $\Phi$-spaces and operators of canonical affinor structures of these spaces. The obtained relations allow us to indicate several cases of integrability of the mentioned structures.
Keywords: homogeneous periodic $\Phi$-space, generalized symmetric space, affinor structure, integrability of affinor structure.
Received: 26.06.2006
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 8, Pages 35–47
DOI: https://doi.org/10.3103/S1066369X08080057
Bibliographic databases:
UDC: 514.765
Language: Russian
Citation: Yu. D. Churbanov, “Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 8, 43–57; Russian Math. (Iz. VUZ), 52:8 (2008), 35–47
Citation in format AMSBIB
\Bibitem{Chu08}
\by Yu.~D.~Churbanov
\paper Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 8
\pages 43--57
\mathnet{http://mi.mathnet.ru/ivm1679}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2468314}
\zmath{https://zbmath.org/?q=an:1176.53052}
\elib{https://elibrary.ru/item.asp?id=11018383}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 8
\pages 35--47
\crossref{https://doi.org/10.3103/S1066369X08080057}
Linking options:
  • https://www.mathnet.ru/eng/ivm1679
  • https://www.mathnet.ru/eng/ivm/y2008/i8/p43
  • This publication is cited in the following 3 articles:
    1. A. S. Samsonov, “Nearly Kähler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order 6”, Russian Math. (Iz. VUZ), 55:4 (2011), 74–82  mathnet  crossref  mathscinet  elib
    2. A. S. Samsonov, “Nearly Kähler and Hermitian $f$-structures on homogeneous $\Phi$-spaces of order $k$ with special metrics”, Siberian Math. J., 52:6 (2011), 1092–1103  mathnet  crossref  mathscinet  isi
    3. Balashchenko V.V., Samsonov A.S., “Nearly Kähler and Hermitian $f$-structures on homogeneous $k$-symmetric spaces”, Dokl. Math., 81:3 (2010), 386–389  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :83
    References:76
    First page:1
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025