|
|
Publications in Math-Net.Ru |
Citations |
|
2020 |
1. |
Valerii Samoilenko, Yuliia Samoilenko, “The existence of solutions to an inhomogeneous higher order differential equation in the Schwartz space”, Zh. Mat. Fiz. Anal. Geom., 16:4 (2020), 454–459 |
|
1987 |
2. |
Yu. M. Berezanskiĭ, V. G. Samoĭlenko, “Selfadjointness of infinite-dimensional elliptic differential operators”, Tr. Mosk. Mat. Obs., 50 (1987), 3–54 |
|
1986 |
3. |
Yu. A. Mitropol'skii, A. K. Prikarpatskii, V. G. Samoilenko, “An asymptotic method for constructing implectic and recursion operators of completely integrable dynamic systems”, Dokl. Akad. Nauk SSSR, 287:6 (1986), 1312–1317 |
|
1985 |
4. |
N. N. Bogolyubov, A. K. Prikarpatskii, V. G. Samoilenko, “Dynamical systems of Neumann type and their complete integrability”, Dokl. Akad. Nauk SSSR, 285:4 (1985), 853–857 |
5. |
V. G. Samoilenko, “Boundedness of the multiplication operator with respect to the second quantization operator”, Dokl. Akad. Nauk SSSR, 281:6 (1985), 1316–1319 |
6. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, A. M. Kurbatov, V. G. Samoilenko, “Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability”, TMF, 65:2 (1985), 271–284 ; Theoret. and Math. Phys., 65:2 (1985), 1154–1164 |
5
|
|
1982 |
7. |
V. G. Samoilenko, “The spectrum of a differential operator with an infinite number of variables”, Sibirsk. Mat. Zh., 23:6 (1982), 147–159 ; Siberian Math. J., 23:6 (1982), 880–890 |
8. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, V. G. Samoilenko, “Discrete periodic problem for the modified nonlinear Korteweg–de Vries equation”, TMF, 50:1 (1982), 118–126 ; Theoret. and Math. Phys., 50:1 (1982), 75–81 |
8
|
|
1981 |
9. |
N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, V. G. Samoilenko, “Discrete periodic problem for a modified nonlinear Korteweg-de Vries equation”, Dokl. Akad. Nauk SSSR, 258:3 (1981), 575–580 |
10. |
Yu. M. Berezanskii, V. G. Samoilenko, “On the self-adjointness of differential operators with finitely or infinitely many variables, and evolution equations”, Uspekhi Mat. Nauk, 36:5(221) (1981), 3–56 ; Russian Math. Surveys, 36:5 (1981), 1–62 |
7
|
|
Organisations |
|
|
|
|