Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Stepanenko, Alexandr Sergeyevich

Statistics Math-Net.Ru
Total publications: 6
Scientific articles: 6

Number of views:
This page:270
Abstract pages:1907
Full texts:771
References:288
Candidate of physico-mathematical sciences (1995)
Speciality: 01.04.02 (Theoretical physics)

https://www.mathnet.ru/eng/person21636
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/338515
https://elibrary.ru/author_items.asp?authorid=22603

Publications in Math-Net.Ru Citations
1996
1. K. N. Ilinski, A. S. Stepanenko, “$q$-Deformed superspace and $q$-extended supersymmetric Hamiltonian with arbitrary superpotential”, Zap. Nauchn. Sem. POMI, 235 (1996),  260–272  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 94:4 (1999), 1611–1619
1993
2. A. N. Vasil'ev, A. S. Stepanenko, “The $1/n$ expansion in the Gross–Neveu model: Conformal bootstrap calculation of the exponent $1/\nu$ to the order $1/n^2$”, TMF, 97:3 (1993),  364–372  mathnet  mathscinet; Theoret. and Math. Phys., 97:3 (1993), 1349–1354  isi 35
3. A. N. Vasil'ev, A. S. Stepanenko, “A method of calculating the critical dimensions of composite operators in the massless nonlinear $\sigma$ model”, TMF, 95:1 (1993),  160–175  mathnet  zmath; Theoret. and Math. Phys., 95:1 (1993), 471–481 21
4. A. N. Vasil'ev, S. È. Derkachev, N. A. Kivel', A. S. Stepanenko, “The $1/n$ expansion in the Gross–Neveu model: Conformal bootstrap calculation of the index $\eta$ in order $1/n^3$”, TMF, 94:2 (1993),  179–192  mathnet; Theoret. and Math. Phys., 94:2 (1993), 127–136  isi 81
1992
5. A. N. Vasil'ev, S. È. Derkachev, N. A. Kivel', A. S. Stepanenko, “Proof of conformal invariance in the critical regime for models of Gross–Neveu type”, TMF, 92:3 (1992),  486–497  mathnet  mathscinet; Theoret. and Math. Phys., 92:3 (1992), 1047–1054  isi 12
1991
6. N. V. Antonov, A. N. Vasil'ev, A. S. Stepanenko, “Scaling function $\tau\to 0$ asymptotics of the correlation function in the $O_n-\varphi^4$ model”, TMF, 88:1 (1991),  149–152  mathnet; Theoret. and Math. Phys., 88:1 (1991), 779–781  isi

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024