Abstract:
Using the conformal invariance of the Green's functions for the fields in the Gross–Neveu model in the critical regime that was proved earlier, we now use the conformal-bootstrap method for arbitrary space dimension d to calculate the critical dimension of the master field (index \ifmmode \eta \else η\fi) in order 1/n3 and of the auxiliary field in order 1/n2, i. e., to an order higher by one than the previously known results.
Citation:
A. N. Vasil'ev, S. È. Derkachev, N. A. Kivel', A. S. Stepanenko, “The 1/n expansion in the Gross–Neveu model: Conformal bootstrap calculation of the index η in order 1/n3”, TMF, 94:2 (1993), 179–192; Theoret. and Math. Phys., 94:2 (1993), 127–136
\Bibitem{VasDerKiv93}
\by A.~N.~Vasil'ev, S.~\`E.~Derkachev, N.~A.~Kivel', A.~S.~Stepanenko
\paper The $1/n$ expansion in the Gross--Neveu model: Conformal bootstrap calculation of the index $\eta$ in order $1/n^3$
\jour TMF
\yr 1993
\vol 94
\issue 2
\pages 179--192
\mathnet{http://mi.mathnet.ru/tmf1415}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 94
\issue 2
\pages 127--136
\crossref{https://doi.org/10.1007/BF01019324}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LZ24300001}
Linking options:
https://www.mathnet.ru/eng/tmf1415
https://www.mathnet.ru/eng/tmf/v94/i2/p179
This publication is cited in the following 84 articles:
Gordon W. Semenoff, Riley A. Stewart, “Parity-violating marginal deformation of the 3D Gross-Neveu-Thirring model”, Phys. Rev. D, 111:2 (2025)
Huanzhi Hu, Frank Krüger, “Quantum criticality of type-I and critically tilted Dirac semimetals”, Physica C: Superconductivity and its Applications, 632 (2025), 1354687
SangEun Han, Shouryya Ray, Igor F. Herbut, “Gross-Neveu-Yukawa SO(2) and SO(3) tensorial criticality”, Phys. Rev. B, 111:11 (2025)
Shiroman Prakash, Shubham Kumar Sinha, “Emergent supersymmetry at large N”, J. High Energ. Phys., 2024:1 (2024)
SangEun Han, Igor F. Herbut, “Spontaneous breaking of the
SO(2N)
symmetry in the Gross-Neveu model”, Phys. Rev. D, 109:9 (2024)
SangEun Han, Igor F. Herbut, “Gross-Neveu-Yukawa theory of
SO(2N)→SO(N)×SO(N)
spontaneous symmetry breaking”, Phys. Rev. B, 110:12 (2024)
I. F. Herbut, “Wilson-Fisher fixed points in the presence of Dirac fermions”, Mod. Phys. Lett. B, 2024
Rajeev S. Erramilli, Luca V. Iliesiu, Petr Kravchuk, Aike Liu, David Poland, David Simmons-Duffin, “The Gross-Neveu-Yukawa archipelago”, J. High Energ. Phys., 2023:2 (2023)
Igor F. Herbut, Subrata Mandal, “SO(8)
unification and the large-
N
theory of superconductor-insulator transition of two-dimensional Dirac fermions”, Phys. Rev. B, 108:16 (2023)
Shiroman Prakash, “Spectrum of a Gross-Neveu Yukawa model with flavor disorder in three dimensions”, Phys. Rev. D, 107:6 (2023)
Claudio Bonati, Alessio Franchi, Andrea Pelissetto, Ettore Vicari, “Chiral critical behavior of 3D lattice fermionic models with quartic interactions”, Phys. Rev. D, 107:3 (2023)
Noam Chai, Mikhail Goykhman, Ritam Sinha, “Conformal correlators in the critical
O(N)
vector model”, Phys. Rev. D, 105:8 (2022)
J. A. Gracey, “Five loop renormalization of the Wess-Zumino model”, Phys. Rev. D, 105:2 (2022)
Laura Classen, J H Pixley, Elio J König, “Interaction-induced velocity renormalization in magic-angle twisted multilayer graphene”, 2D Mater., 9:3 (2022), 031001
John A. Gracey, “Generalized Gross–Neveu Universality Class with Non-Abelian Symmetry”, SIGMA, 17 (2021), 064, 20 pp.
J. A. Gracey, “Critical exponent
η
at
O(1/N3)
in the chiral XY model using the large
N
conformal bootstrap”, Phys. Rev. D, 103:6 (2021)
Shouryya Ray, Bernhard Ihrig, Daniel Kruti, John A. Gracey, Michael M. Scherer, Lukas Janssen, “Fractionalized quantum criticality in spin-orbital liquids from field theory beyond the leading order”, Phys. Rev. B, 103:15 (2021)
M. A. Shpot, “Boundary conformal field theory at the extraordinary transition: The layer susceptibility to O(ε)”, J. High Energ. Phys., 2021:1 (2021)
Oleg Antipin, Jahmall Bersini, Francesco Sannino, Zhi-Wei Wang, Chen Zhang, “More on the cubic versus quartic interaction equivalence in the
O(N)
model”, Phys. Rev. D, 104:8 (2021)
Andreas Wipf, Lecture Notes in Physics, 992, Statistical Approach to Quantum Field Theory, 2021, 475