Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Tuvaev, Mikhail Vasil'evich

Statistics Math-Net.Ru
Total publications: 9
Scientific articles: 9

Number of views:
This page:298
Abstract pages:1371
Full texts:513
References:80
Candidate of physico-mathematical sciences (1993)

https://www.mathnet.ru/eng/person20763
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/293562

Publications in Math-Net.Ru Citations
1999
1. M. V. Tuvaev, “Averaging of solutions of an elliptic equation with nonlinear absorption in a punctured domain”, Differ. Uravn., 35:6 (1999),  846–847  mathnet  mathscinet; Differ. Equ., 35:6 (1999), 854–855 1
2. M. V. Tuvaev, “An infinite-dimensional analogue of the theorem on a removable singular point of a harmonic function”, Differ. Uravn., 35:3 (1999),  426–427  mathnet  mathscinet; Differ. Equ., 35:3 (1999), 430–432
1998
3. M. V. Tuvaev, “A “dead zone” theorem for the Neumann problem”, Differ. Uravn., 34:8 (1998),  1140–1141  mathnet  mathscinet; Differ. Equ., 34:8 (1998), 1146–1147
1996
4. M. V. Tuvaev, “Removable singular sets of solutions of parabolic inequalities”, Differ. Uravn., 32:11 (1996),  1569–1571  mathnet  mathscinet; Differ. Equ., 32:11 (1996), 1566–1569
1994
5. M. V. Tuvaev, “On removable singular sets for quasilinear elliptic equations”, Mat. Sb., 185:2 (1994),  107–114  mathnet  mathscinet  zmath; Russian Acad. Sci. Sb. Math., 81:1 (1995), 229–234  isi 5
1993
6. M. V. Tuvaev, “The “dead zone” theorem for a weakly degenerate quasilinear elliptic equation”, Differ. Uravn., 29:2 (1993),  349–352  mathnet  mathscinet; Differ. Equ., 29:2 (1993), 289–292 1
1992
7. M. V. Tuvaev, “Removable singular sets for equations of the form $\sum\dfrac{\partial}{\partial x_i}a_{ij}(x)\dfrac{\partial u}{\partial x_j}=f(x,u,\nabla u)$”, Mat. Zametki, 52:3 (1992),  146–153  mathnet  mathscinet  zmath; Math. Notes, 52:3 (1992), 983–989 2
8. M. V. Tuvaev, “Removable singular sets for nonlinear elliptic equations”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 1,  8–13  mathnet  mathscinet  zmath 1
1990
9. M. V. Tuvaev, “Removable singular sets for semilinear elliptic and parabolic equations”, Differ. Uravn., 26:8 (1990),  1388–1396  mathnet  mathscinet; Differ. Equ., 26:8 (1990), 1024–1030 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024