|
This article is cited in 5 scientific papers (total in 5 papers)
On removable singular sets for quasilinear elliptic equations
M. V. Tuvaev
Abstract:
For equations of the form
$$
\operatorname{div}(|\nabla u|^{p-2}\nabla u)
=\alpha|u|^{\beta_1}|\nabla u|^{\beta_2}\operatorname{sgn}u,\qquad x\in\Omega\subset\mathbb{R}^n,
$$
in the case $1<p<n$, $\beta_1>0$, $0\leqslant \beta_2\leqslant p$, $\beta_1+\beta_2>p-1$,
$\alpha>0$, sufficient conditions are given for removability of singular sets of dimension
$\alpha$. These conditions are nearly necessary, and are given by the formula
$$
0\leqslant \alpha <n-\frac{p\beta_1+\beta_2}{\beta_1+\beta_2+1-p}.
$$
Received: 09.03.1992 and 25.01.1993
Citation:
M. V. Tuvaev, “On removable singular sets for quasilinear elliptic equations”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 229–234
Linking options:
https://www.mathnet.ru/eng/sm881https://doi.org/10.1070/SM1995v081n01ABEH003622 https://www.mathnet.ru/eng/sm/v185/i2/p107
|
Statistics & downloads: |
Abstract page: | 351 | Russian version PDF: | 104 | English version PDF: | 18 | References: | 82 | First page: | 1 |
|