|
|
Publications in Math-Net.Ru |
Citations |
|
2001 |
1. |
D. V. Yur'ev, “Octonions and binocular mobilevision”, Fundam. Prikl. Mat., 7:3 (2001), 909–924 |
|
2000 |
2. |
D. V. Yur'ev, “Characteristics of pairs of operators, Lie hybrids, Poisson brackets and nonlinear geometric algebra”, Fundam. Prikl. Mat., 6:1 (2000), 265–273 |
|
1998 |
3. |
D. V. Yur'ev, “Dynamical inverse problem of representation theory and noncommutative geometry”, Fundam. Prikl. Mat., 4:1 (1998), 359–365 |
|
1997 |
4. |
D. V. Yur'ev, “Topics in isotopic pairs and their representations. II. A general supercase”, TMF, 111:1 (1997), 149–158 ; Theoret. and Math. Phys., 111:1 (1997), 511–518 |
1
|
|
1996 |
5. |
D. V. Yur'ev, “Belavkin–Kolokoltsov watch-dog effects in interactively controlled stochastic dynamical videosystems”, TMF, 106:2 (1996), 333–352 ; Theoret. and Math. Phys., 106:2 (1996), 276–290 |
3
|
|
1995 |
6. |
D. V. Yur'ev, “Isotopic pairs and their representations”, TMF, 105:1 (1995), 18–28 ; Theoret. and Math. Phys., 105:1 (1995), 1201–1209 |
2
|
|
1994 |
7. |
D. V. Yur'ev, “Complex projective geometry and quantum projective field theory”, TMF, 101:3 (1994), 331–348 ; Theoret. and Math. Phys., 101:3 (1994), 1387–1403 |
4
|
8. |
D. V. Yur'ev, “Quantum projective field theory: Quantum-field analogs of the Euler–Arnol'd equations in projective $G$ multiplets”, TMF, 98:2 (1994), 220–240 ; Theoret. and Math. Phys., 98:2 (1994), 147–161 |
2
|
|
1993 |
9. |
S. A. Bychkov, D. V. Yur'ev, “Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory”, TMF, 97:3 (1993), 336–347 ; Theoret. and Math. Phys., 97:3 (1993), 1333–1339 |
2
|
|
1992 |
10. |
S. A. Bychkov, S. V. Plotnikov, D. V. Yur'ev, “Folding of Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb C)$ and hidden
$\mathfrak{sl}(3, \mathbb C)$-symmetries in a projective quantum field theory”, Uspekhi Mat. Nauk, 47:3(285) (1992), 153 ; Russian Math. Surveys, 47:3 (1992), 169 |
2
|
11. |
D. V. Yur'ev, “On the determination of the radius of univalence of a regular function from its Taylor coefficients”, Mat. Sb., 183:1 (1992), 45–64 ; Russian Acad. Sci. Sb. Math., 75:1 (1993), 43–59 |
3
|
12. |
D. V. Yur'ev, “QPFT operator algebras and commutative exterior differential calculus”, TMF, 93:1 (1992), 32–38 ; Theoret. and Math. Phys., 93:1 (1992), 1101–1105 |
3
|
13. |
D. V. Yur'ev, “Quantum projective field theory: Quantum-field analogs of the Euler formulas”, TMF, 92:1 (1992), 172–176 ; Theoret. and Math. Phys., 92:1 (1992), 814–816 |
4
|
|
1991 |
14. |
D. V. Yur'ev, “The algebra $\mathrm{Vert}(\mathbb C\mathrm{vir},c)$ of vertex operators for the Virasoro algebra”, Algebra i Analiz, 3:3 (1991), 197–205 ; St. Petersburg Math. J., 3:3 (1992), 679–686 |
11
|
15. |
D. V. Yur'ev, “A certain module over the binary-Lie central extension $\mathsf{jl_2}(\mathbb C)$ of the double $\mathsf{sl_2}(\mathbb C)+\mathsf{sl_2}(\mathbb C)$”, Uspekhi Mat. Nauk, 46:6(282) (1991), 223–224 ; Russian Math. Surveys, 46:6 (1991), 233–234 |
1
|
16. |
S. A. Bychkov, D. V. Yur'ev, “Fubini-Veneziano fields in quantum projective field theory”, Uspekhi Mat. Nauk, 46:5(281) (1991), 161–162 ; Russian Math. Surveys, 46:5 (1991), 185–186 |
2
|
17. |
D. V. Yur'ev, “Quantum conformal field theory as an infinite-dimensional non-commutative geometry”, Uspekhi Mat. Nauk, 46:4(280) (1991), 115–138 ; Russian Math. Surveys, 46:4 (1991), 135–163 |
7
|
18. |
D. V. Yur'ev, “Classification of vertex operators in two-dimensional
$\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory”, TMF, 86:3 (1991), 338–343 ; Theoret. and Math. Phys., 86:3 (1991), 231–235 |
10
|
|
1990 |
19. |
D. V. Yur'ev, “A model of Verma modules over the Virasoro algebra”, Algebra i Analiz, 2:2 (1990), 209–226 ; Leningrad Math. J., 2:2 (1991), 401–417 |
12
|
20. |
D. V. Yur'ev, “Radius of univalence of a regular function”, Funktsional. Anal. i Prilozhen., 24:1 (1990), 90–91 ; Funct. Anal. Appl., 24:1 (1990), 80–81 |
1
|
|
1988 |
21. |
D. V. Yur'ev, “Non-Euclidean geometry of mirrors and prequantization on the homogeneous Kähler manifold $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$”, Uspekhi Mat. Nauk, 43:2(260) (1988), 159–160 ; Russian Math. Surveys, 43:2 (1988), 187–188 |
|
1987 |
22. |
A. A. Kirillov, D. V. Yur'ev, “Kähler geometry of the infinite-dimensional homogeneous space $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$”, Funktsional. Anal. i Prilozhen., 21:4 (1987), 35–46 ; Funct. Anal. Appl., 21:4 (1987), 284–294 |
31
|
23. |
D. V. Yur'ev, “Octonion and superoctonion symmetries in exceptional gauge groups”, TMF, 73:1 (1987), 74–78 ; Theoret. and Math. Phys., 73:1 (1987), 1069–1072 |
1
|
|
1986 |
24. |
A. A. Kirillov, D. V. Yur'ev, “Kähler geometry of the infinite-dimensional homogeneous manifold $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$”, Funktsional. Anal. i Prilozhen., 20:4 (1986), 79–80 ; Funct. Anal. Appl., 20:4 (1986), 322–324 |
11
|
|
Organisations |
|
|
|
|