Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1991, Volume 86, Number 3, Pages 338–343 (Mi tmf5450)  

This article is cited in 10 scientific papers (total in 10 papers)

Classification of vertex operators in two-dimensional $\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory

D. V. Yur'ev
References:
Abstract: The vertex operators in two-dimensional $\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory are classified.
Received: 22.03.1990
English version:
Theoretical and Mathematical Physics, 1991, Volume 86, Issue 3, Pages 231–235
DOI: https://doi.org/10.1007/BF01028419
Bibliographic databases:
Language: Russian
Citation: D. V. Yur'ev, “Classification of vertex operators in two-dimensional $\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory”, TMF, 86:3 (1991), 338–343; Theoret. and Math. Phys., 86:3 (1991), 231–235
Citation in format AMSBIB
\Bibitem{Yur91}
\by D.~V.~Yur'ev
\paper Classification of vertex operators in two-dimensional
$\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory
\jour TMF
\yr 1991
\vol 86
\issue 3
\pages 338--343
\mathnet{http://mi.mathnet.ru/tmf5450}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1107935}
\zmath{https://zbmath.org/?q=an:0726.17008}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 86
\issue 3
\pages 231--235
\crossref{https://doi.org/10.1007/BF01028419}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GJ55400003}
Linking options:
  • https://www.mathnet.ru/eng/tmf5450
  • https://www.mathnet.ru/eng/tmf/v86/i3/p338
  • This publication is cited in the following 10 articles:
    1. D. V. Yur'ev, “Belavkin–Kolokoltsov watch-dog effects in interactively controlled stochastic dynamical videosystems”, Theoret. and Math. Phys., 106:2 (1996), 276–290  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. M. A. Drofa, L. S. Kuz'menkov, “Continual approach to the multiparticle systems with long-range interaction. Hierarchy of macroscopic fields and some physical consequences”, Theoret. and Math. Phys., 108:1 (1996), 849–859  mathnet  mathnet  crossref  crossref  isi
    3. D. V. Yur'ev, “Complex projective geometry and quantum projective field theory”, Theoret. and Math. Phys., 101:3 (1994), 1387–1403  mathnet  crossref  mathscinet  zmath  isi
    4. D. V. Yur'ev, “Quantum projective field theory: Quantum-field analogs of the Euler–Arnol'd equations in projective $G$ multiplets”, Theoret. and Math. Phys., 98:2 (1994), 147–161  mathnet  crossref  mathscinet  zmath  isi
    5. S. A. Bychkov, D. V. Yur'ev, “Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory”, Theoret. and Math. Phys., 97:3 (1993), 1333–1339  mathnet  crossref  mathscinet  zmath  isi
    6. S. A. Bychkov, S. V. Plotnikov, D. V. Yur'ev, “Folding of Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb C)$ and hidden $\mathfrak{sl}(3, \mathbb C)$-symmetries in a projective quantum field theory”, Russian Math. Surveys, 47:3 (1992), 169–169  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. D. V. Yur'ev, “Quantum projective field theory: Quantum-field analogs of the Euler formulas”, Theoret. and Math. Phys., 92:1 (1992), 814–816  mathnet  crossref  mathscinet  isi
    8. D. V. Yur'ev, “QPFT operator algebras and commutative exterior differential calculus”, Theoret. and Math. Phys., 93:1 (1992), 1101–1105  mathnet  crossref  mathscinet  zmath  isi
    9. Denis Juriev, “Noncommutative geometry, chiral anomaly in the quantum projective [sl(2,C)-invariant] field theory and jl(2,C)-invariance”, Journal of Mathematical Physics, 33:8 (1992), 2819  crossref
    10. D. V. Yur'ev, “Quantum conformal field theory as an infinite-dimensional non-commutative geometry”, Russian Math. Surveys, 46:4 (1991), 135–163  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:327
    Full-text PDF :103
    References:61
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025