Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Novikov, Sergey Igorevich

Statistics Math-Net.Ru
Total publications: 24
Scientific articles: 22

Number of views:
This page:1172
Abstract pages:5610
Full texts:2049
References:785
Senior Researcher
Candidate of physico-mathematical sciences (1987)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 4.09.1956
E-mail:
Keywords: approximation, splines, interpolation,extremal problems.
UDC: 517.5, 519.652, 517.929, 517.9, 517.51
MSC: 41A46, 34B15

Subject:

Approximation theory, interpolation and splines.

Biography

1973–1978 — student of the faculty of Mathematics and Mechanics of the Ural State University (Ekaterimburg, Russia),
1978–1980 — probationer-researcher at the Institute of Mathematics and Mechanics (IMM) of Ural Science Center of Sciences Academy of USSR,
1980–1983 — engineer (IMM),
1983–1990 — junior scientific researcher (IMM),
1987 — thesis for candidat degree "Approximation of functions by L-splines",
1990–1992 — scientific researcher (IMM),
1992 – p./t. — senior scientific researcher at the IMM of Ural Branch of Russian Academy of Sciences,
1996 – p./t. — associate professor, Ural State University.

   
Main publications:
  • Novikov S. I. On L-spline interpolation and approximation on the whole real line // Banach Center Publications, 1989, vol. 22 (Warsaw), p. 293–300.
  • Novikov S. I. On some problems of interpolation by L-splines // Analysis Mathematica, 1992, vol. 18, no. 1, p. 73–86.
  • Novikov S. I. Optimal interpolation by L-splines // Optimal Recovery, Nova Sci. Publ., New York, USA, 1992, p. 237–245.
  • Novikov S. I. L_p-approximation by piecewise Hermitian L-splines // East Journal on Approximations, 1995, vol. 1, no. 2, p. 143–156.
  • Novikov S. I. Generalization of the Rolle theorem // East Journal on Approximations, 1995, vol. 1, no. 4, p. 571–575.
  • Novikov S. I. Exact values of widths for some classes of periodic functions // East Journal on Approximations, 1998, vol. 4, no. 1, p. 35–54.

https://www.mathnet.ru/eng/person19936
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/237422

Publications in Math-Net.Ru Citations
2023
1. S. I. Novikov, “Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  217–228  mathnet  elib
2022
2. Yu. S. Volkov, S. I. Novikov, “Estimates of solutions to infinite systems of linear equations and the problem of interpolation by cubic splines on the real line”, Sibirsk. Mat. Zh., 63:4 (2022),  814–830  mathnet; Siberian Math. J., 63:4 (2022), 677–690 2
3. S. I. Novikov, “On an Interpolation Problem with the Smallest $L_2$-Norm of the Laplace Operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  143–153  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S193–S203  isi  scopus 1
2020
4. S. I. Novikov, V. T. Shevaldin, “Extremal interpolation on the semiaxis with the smallest norm of the third derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  210–223  mathnet  elib 1
5. S. I. Novikov, V. T. Shevaldin, “On the connection between the second divided difference and the second derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  216–224  mathnet  elib 7
2019
6. S. I. Novikov, “Extremal function interpolation for a second-order linear differential operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  164–176  mathnet  elib
2018
7. Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Extremal functional interpolation and splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  200–225  mathnet  elib 13
2017
8. Sergey I. Novikov, “On interpolation by almost trigonometric splines”, Ural Math. J., 3:2 (2017),  67–73  mathnet  mathscinet  elib
2016
9. S. I. Novikov, “Lebesgue constants for some interpolational ${\mathcal L}$-splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  215–224  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 136–144  isi  scopus 2
2015
10. S. I. Novikov, “Interpolation by functions from a Sobolev space with minimum $L_p$-norm of the Laplace operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  212–222  mathnet  mathscinet  elib
11. S. I. Novikov, “On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  191–196  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 238–244  isi  scopus
2013
12. S. I. Novikov, “On an interpolation problem with a minimum value of the Laplace operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  230–243  mathnet  mathscinet  elib 1
2012
13. S. I. Novikov, “Interpolation on a square with a minimum value of the uniform norm of the Laplace operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  249–257  mathnet  elib 1
2011
14. S. I. Novikov, “Interpolation in a ball with a minimum value of the $L_p$-norm of the Laplace operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  258–265  mathnet  elib 2
2010
15. B. G. Grebenshchikov, S. I. Novikov, “Instability of systems with linear delay reducible to singularly perturbed ones”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2,  3–13  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 54:2 (2010), 1–10  scopus 13
2006
16. S. I. Novikov, “Periodic interpolation with a minimum norm of the $m$-th derivative”, Sib. Zh. Vychisl. Mat., 9:2 (2006),  165–172  mathnet 2
2001
17. S. I. Novikov, V. T. Shevaldin, “A problem of extremal interpolation for multivariate functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001),  144–159  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2001no. , suppl. 1, S150–S166 6
1998
18. S. I. Novikov, “On solvability of a spectral boundary value problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  174–182  mathnet  zmath 1
1994
19. S. I. Novikov, “The periodic analog of Rolle's theorem for differential operators and approximation by $L$-splines”, Mat. Zametki, 56:4 (1994),  102–113  mathnet  mathscinet  zmath; Math. Notes, 56:4 (1994), 1061–1068  isi
1987
20. S. I. Novikov, “Widths of a class of periodic functions defined by a differential operator”, Mat. Zametki, 42:2 (1987),  194–206  mathnet  mathscinet  zmath; Math. Notes, 42:2 (1987), 613–619  isi 1
1985
21. E. Yu. Klimenko, N. N. Martovetskiy, S. I. Novikov, “CURRENT STABILITY IN THE T-15 SMS DEVICE DURING PLASMA CURRENT BLOW-OUT”, Zhurnal Tekhnicheskoi Fiziki, 55:6 (1985),  1076–1083  mathnet
1983
22. S. I. Novikov, “Approximation of a class of differentiable functions by $\mathscr{L}$-splines”, Mat. Zametki, 33:3 (1983),  393–408  mathnet  mathscinet  zmath; Math. Notes, 33:3 (1983), 200–208 2

2022
23. R. R. Akopyan, N. Yu. Antonov, V. V. Arestov, A. G. Babenko, N. V. Baidakova, V. I. Berdyshev, V. V. Vasin, S. I. Novikov, N. L. Patsko, A. G. Chentsov, N. I. Chernykh, V. T. Shevaldin, “Yurii Nikolaevich Subbotin (A Tribute to His Memory)”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  9–16  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S1–S6  isi
2007
24. V. V. Arestov, V. I. Berdyshev, O. V. Besov, N. N. Krasovskii, S. M. Nikol'skii, S. I. Novikov, Yu. S. Osipov, S. A. Telyakovskii, N. I. Chernykh, V. T. Shevaldin, “Yurii Nikolaevich Subbotin (on his 70th birthday)”, Uspekhi Mat. Nauk, 62:2(374) (2007),  187–190  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 62:2 (2007), 403–406  isi 3

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024