Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 4, Pages 143–153
DOI: https://doi.org/10.21538/0134-4889-2022-28-4-143-153
(Mi timm1958)
 

This article is cited in 1 scientific paper (total in 1 paper)

On an Interpolation Problem with the Smallest $L_2$-Norm of the Laplace Operator

S. I. Novikov

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (217 kB) Citations (1)
References:
Abstract: The paper is devoted to an interpolation problem for finite sets of real numbers bounded in the Euclidean norm. The interpolation is by a class of smooth functions of two variables with the minimum $L_{2}$-norm of the Laplace operator $\Delta=\partial^{2 }/\partial x^{2}+\partial^{2 }/\partial y^{2}$ applied to the interpolating functions. It is proved that if $N\geq 3$ and the interpolation points $\{(x_{j},y_{j})\}_{j=1}^{N}$ do not lie on the same straight line, then the minimum value of the $L_{2}$-norm of the Laplace operator on interpolants from the class of smooth functions for interpolated data from the unit ball of the space $l_{2}^{N}$ is expressed in terms of the largest eigenvalue of the matrix of a certain quadratic form.
Keywords: interpolation, Laplace operator, thin plate splines.
Received: 19.08.2022
Revised: 01.09.2022
Accepted: 05.09.2022
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2022, Volume 319, Issue 1, Pages S193–S203
DOI: https://doi.org/10.1134/S0081543822060177
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 41A05, 41A15
Language: Russian
Citation: S. I. Novikov, “On an Interpolation Problem with the Smallest $L_2$-Norm of the Laplace Operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 4, 2022, 143–153; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S193–S203
Citation in format AMSBIB
\Bibitem{Nov22}
\by S.~I.~Novikov
\paper On an Interpolation Problem with the Smallest $L_2$-Norm of the Laplace Operator
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 4
\pages 143--153
\mathnet{http://mi.mathnet.ru/timm1958}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-4-143-153}
\elib{https://elibrary.ru/item.asp?id=49866456}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 319
\issue , suppl. 1
\pages S193--S203
\crossref{https://doi.org/10.1134/S0081543822060177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905217200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148365334}
Linking options:
  • https://www.mathnet.ru/eng/timm1958
  • https://www.mathnet.ru/eng/timm/v28/i4/p143
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :26
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024