|
|
Publications in Math-Net.Ru |
Citations |
|
2006 |
1. |
O. V. Borodin, A. N. Glebov, T. R. Jensen, A. Raspaud, “Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are $3$-colorable”, Sib. Èlektron. Mat. Izv., 3 (2006), 428–440 |
12
|
|
2002 |
2. |
O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces”, Mat. Zametki, 72:1 (2002), 35–37 ; Math. Notes, 72:1 (2002), 31–42 |
1
|
|
2000 |
3. |
O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Acyclic $k$-strong coloring of maps on surfaces”, Mat. Zametki, 67:1 (2000), 36–45 ; Math. Notes, 67:1 (2000), 29–35 |
4
|
|
1999 |
4. |
O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena, “Acyclic coloring of 1-planar graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 6:4 (1999), 20–35 |
11
|
|
Organisations |
|
|