Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Egorova, Irina Evgen'evna

Statistics Math-Net.Ru
Total publications: 13
Scientific articles: 13

Number of views:
This page:700
Abstract pages:3418
Full texts:1072
References:492
E-mail:

https://www.mathnet.ru/eng/person18438
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/213624

Publications in Math-Net.Ru Citations
2021
1. Iryna Egorova, Johanna Michor, “How Discrete Spectrum and Resonances Influence the Asymptotics of the Toda Shock Wave”, SIGMA, 17 (2021), 045, 32 pp.  mathnet  isi  scopus 1
2018
2. Iryna Egorova, Johanna Michor, Gerald Teschl, “Long-time asymptotics for the Toda shock problem: non-overlapping spectra”, Zh. Mat. Fiz. Anal. Geom., 14:4 (2018),  406–451  mathnet 6
2017
3. K. Andreiev, I. Egorova, “On the long-time asymptotics for the Korteweg–de Vries equation with steplike initial data associated with rarefaction waves”, Zh. Mat. Fiz. Anal. Geom., 13:4 (2017),  325–343  mathnet  isi 1
2016
4. I. Egorova, Z. Gladka, G. Teschl, “On the form of dispersive shock waves of the Korteweg–de Vries equation”, Zh. Mat. Fiz. Anal. Geom., 12:1 (2016),  3–16  mathnet  mathscinet  isi 8
5. I. E. Egorova, E. A. Kopylova, V. A. Marchenko, G. Teschl, “Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited”, Uspekhi Mat. Nauk, 71:3(429) (2016),  3–26  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 71:3 (2016), 391–415  isi  scopus 22
2015
6. I. Egorova, Z. Gladka, T. L. Lange, G. Teschl, “Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials”, Zh. Mat. Fiz. Anal. Geom., 11:2 (2015),  123–158  mathnet  mathscinet  isi 11
2013
7. I. E. Egorova, L. A. Pastur, “On asymptotic properties of polynomials orthogonal with respect to varying weights and related topics of spectral theory”, Algebra i Analiz, 25:2 (2013),  101–124  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 25:2 (2014), 223–240  isi  scopus 1
2010
8. I. Egorova, G. Teschl, “A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation”, Zh. Mat. Fiz. Anal. Geom., 6:1 (2010),  21–33  mathnet  mathscinet  zmath  isi  elib 9
2008
9. I. Egorova, J. Michor, G. Teschl, “Scattering theory for Jacobi operators with general step-like quasiperiodic background”, Zh. Mat. Fiz. Anal. Geom., 4:1 (2008),  33–62  mathnet  mathscinet  zmath  isi 6
2005
10. L. B. Golinskii, I. E. Egorova, “Limit sets for the discrete spectrum of complex Jacobi matrices”, Mat. Sb., 196:6 (2005),  43–70  mathnet  mathscinet  zmath  elib; Sb. Math., 196:6 (2005), 817–844  isi  elib  scopus 10
2003
11. J. Bazargan, I. Egorova, “Jacobi operator with step-like asymptotically periodic coefficients”, Mat. Fiz. Anal. Geom., 10:3 (2003),  425–442  mathnet  mathscinet  zmath 7
2002
12. I. Egorova, “The scattering problem for step-like Jacobi operator”, Mat. Fiz. Anal. Geom., 9:2 (2002),  188–205  mathnet  mathscinet  zmath 7
1992
13. I. E. Egorova, “On a class of almost periodic solutions of the KdV equation with a nowhere dense spectrum”, Dokl. Akad. Nauk, 323:2 (1992),  219–222  mathnet  mathscinet  zmath; Dokl. Math., 45:2 (1992), 290–293

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024