Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2016, Volume 71, Issue 3, Pages 391–415
DOI: https://doi.org/10.1070/RM9708
(Mi rm9708)
 

This article is cited in 22 scientific papers (total in 22 papers)

Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited

I. E. Egorovaa, E. A. Kopylovabc, V. A. Marchenkoa, G. Teschldc

a B. Verkin Institute for Low Temperature Physics, Kharkiv, Ukraine
b Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
c University of Vienna, Vienna, Austria
d International Erwin Schrödinger Institute for Mathematical Physics, Vienna, Austria
References:
Abstract: It is shown that for a one-dimensional Schrödinger operator with a potential whose first moment is integrable the elements of the scattering matrix are in the unital Wiener algebra of functions with integrable Fourier transforms. This is then used to derive dispersion estimates for solutions of the associated Schrödinger and Klein–Gordon equations. In particular, the additional decay conditions are removed in the case where a resonance is present at the edge of the continuous spectrum.
Bibliography: 29 titles.
Keywords: Schrödinger equation, Klein–Gordon equation, dispersion estimates, scattering.
Funding agency Grant number
Austrian Science Fund Y330
P27492-N25
Research supported by the Austrian Science Fund (FWF) under grants Y330 and P27492-N25.
Received: 21.12.2015
Bibliographic databases:
Document Type: Article
UDC: 517.955+517.958
MSC: Primary 35L10, 34L25; Secondary 81U30, 81Q15
Language: English
Original paper language: Russian
Citation: I. E. Egorova, E. A. Kopylova, V. A. Marchenko, G. Teschl, “Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited”, Russian Math. Surveys, 71:3 (2016), 391–415
Citation in format AMSBIB
\Bibitem{EgoKopMar16}
\by I.~E.~Egorova, E.~A.~Kopylova, V.~A.~Marchenko, G.~Teschl
\paper Dispersion estimates for one-dimensional Schr\"odinger and Klein--Gordon equations revisited
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 3
\pages 391--415
\mathnet{http://mi.mathnet.ru//eng/rm9708}
\crossref{https://doi.org/10.1070/RM9708}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535363}
\zmath{https://zbmath.org/?q=an:1353.35081}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71..391E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000383395200001}
\elib{https://elibrary.ru/item.asp?id=26414381}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987792394}
Linking options:
  • https://www.mathnet.ru/eng/rm9708
  • https://doi.org/10.1070/RM9708
  • https://www.mathnet.ru/eng/rm/v71/i3/p3
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:661
    Russian version PDF:203
    English version PDF:24
    References:76
    First page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024