Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kapitonov, Valery Stepanovich

Statistics Math-Net.Ru
Total publications: 19
Scientific articles: 19

Number of views:
This page:293
Abstract pages:3551
Full texts:1449
References:254
Candidate of physico-mathematical sciences (1976)
Speciality: 01.02.05 (Mechanics of fluids, gases and plasmas)
E-mail: ,
   
Main publications:
  • Kollektivnye effekty v kvantovykh kristallizuyuschikhsya sistemakh / V. I. Vozyakov, V. S. Kapitonov, V. N. Popov. - Moskva : TVP, 1995. - 200 s.; 26 sm. - (Uspekhi teoreticheskoi fiziki; T. 1).; ISBN 5-85484-020-0

https://www.mathnet.ru/eng/person18428
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/235657
https://elibrary.ru/author_items.asp?authorid=12087

Publications in Math-Net.Ru Citations
2020
1. V. S. Kapitonov, A. G. Pronko, “Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse”, Zap. Nauchn. Sem. POMI, 494 (2020),  168–218  mathnet 4
2012
2. V. S. Kapitonov, A. G. Pronko, “Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model”, Zap. Nauchn. Sem. POMI, 398 (2012),  125–144  mathnet  mathscinet; J. Math. Sci. (N. Y.), 192:1 (2013), 70–80  scopus 7
2008
3. V. S. Kapitonov, A. G. Pronko, “The five-vertex model and boxed plane partitions”, Zap. Nauchn. Sem. POMI, 360 (2008),  162–179  mathnet  zmath; J. Math. Sci. (N. Y.), 158:6 (2009), 858–867  scopus 8
2003
4. R. K. Bullough, N. M. Bogolyubov, V. S. Kapitonov, K. L. Malyshev, I. Timonen, A. V. Rybin, G. G. Varzugin, M. Lindberg, “Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$”, TMF, 134:1 (2003),  55–73  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 134:1 (2003), 47–61  isi 4
2000
5. V. S. Kapitonov, A. G. Pronko, “Time-dependent temperature correlators of local spins of the one-dimensional Heisenberg $XY$ chain”, Zap. Nauchn. Sem. POMI, 269 (2000),  219–261  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 115:1 (2003), 2009–2032 11
1997
6. V. S. Kapitonov, K. L. Malyshev, V. N. Popov, P. A. Sevastianov, “The effective action and the collective modes spectrum in the antiferromagnetic phase of the three–band repulsive Hubbard model”, Zap. Nauchn. Sem. POMI, 245 (1997),  216–230  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 99:2 (2000), 2147–2155 1
7. A. G. Izergin, V. S. Kapitonov, N. A. Kitanin, “Equal-time temperature correlators of the one-dimensional Heisenberg XY chain”, Zap. Nauchn. Sem. POMI, 245 (1997),  173–206  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 100:2 (2000), 2120–2140 13
1996
8. V. S. Kapitonov, P. A. Sevastianov, “Integration over the superalgebra in the Hubbard model with the strong correlation”, TMF, 107:2 (1996),  269–287  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 107:2 (1996), 635–649  isi 2
1995
9. V. S. Kapitonov, K. N. Ilinsky, “Functional representations for correlators of spin chains”, Zap. Nauchn. Sem. POMI, 224 (1995),  192–207  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 88:2 (1998), 233–243 3
1994
10. V. S. Kapitonov, “The many-pole Green functions in the Kondo-lattice model theory”, Zap. Nauchn. Sem. POMI, 209 (1994),  121–136  mathnet  mathscinet  zmath; J. Math. Sci., 83:1 (1997), 75–84
11. V. S. Kapitonov, “Functional representation of the partition function and phase transitions in the Hubbard model”, Zap. Nauchn. Sem. POMI, 209 (1994),  102–120  mathnet  mathscinet  zmath; J. Math. Sci., 83:1 (1997), 62–74 1
1990
12. V. S. Kapitonov, V. N. Popov, “The functional approach to the theory of Coulomb crystals”, Trudy Mat. Inst. Steklov., 184 (1990),  170–195  mathnet  mathscinet
1988
13. V. S. Kapitonov, “The “slave boson” method for the Hubbard model – the $RVB$ state and high – $T_c$ superconductivity”, Zap. Nauchn. Sem. LOMI, 169 (1988),  68–75  mathnet 1
1986
14. V. S. Kapitonov, “Localized superconductivity and Tamm states”, Zap. Nauchn. Sem. LOMI, 150 (1986),  37–47  mathnet
1983
15. V. A. Andrianov, V. S. Kapitonov, V. N. Popov, “Functional approach to the derivation of the effective interaction between electrons in the theory of simple metals”, Zap. Nauchn. Sem. LOMI, 131 (1983),  3–13  mathnet
1982
16. V. A. Andrianov, V. S. Kapitonov, V. N. Popov, “Functional approach to the theory of the metal surface structure”, Zap. Nauchn. Sem. LOMI, 120 (1982),  3–11  mathnet  mathscinet
1981
17. V. S. Kapitonov, V. N. Popov, “Functional integral approuch to the theory of crystals”, Zap. Nauchn. Sem. LOMI, 101 (1981),  77–89  mathnet  mathscinet; J. Soviet Math., 23:4 (1983), 2421–2428 2
1978
18. V. S. Kapitonov, “Hydrodynamic action functional and absorption of electromagnetic waves in plasma”, Zap. Nauchn. Sem. LOMI, 77 (1978),  84–105  mathnet  mathscinet  zmath; J. Soviet Math., 22:5 (1983), 1592–1607 1
1976
19. V. S. Kapitonov, V. N. Popov, “Hydrodynamic action for a plasma”, TMF, 26:2 (1976),  246–255  mathnet; Theoret. and Math. Phys., 26:2 (1976), 164–170 4

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024