|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
G. A. Kurina, N. T. Hoai, “New algorithm for constructing asymptotic solutions of singularly perturbed optimal control problems with intersecting trajectories of the degenerate state equation”, Math. Notes, 116:2 (2024), 303–321 |
2. |
G. A. Kurina, N. T. Hoai, “Projector approach to the Butuzov–Nefedov algorithm for finding asymptotic solutions for a class of discrete problems with a small step”, Zh. Vychisl. Mat. Mat. Fiz., 64:1 (2024), 28–40 ; Comput. Math. Math. Phys., 64:1 (2024), 73–84 |
|
2023 |
3. |
G. A. Kurina, N. T. Hoai, “A new algorithm of constructing asymptotic solution of singularly perturbed optimal control problems with intersecting trajectories of degenerate state equation”, Applied Mathematics & Physics, 55:4 (2023), 313–329 |
4. |
G. A. Kurina, N. T. Hoai, “Zero-Order Asymptotics for the Solution of One Type of Singularly Perturbed Linear–Quadratic Control Problems in the Critical Case”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023), 127–142 ; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S154–S169 |
|
2022 |
5. |
G. A. Kurina, M. A. Kalashnikova, “Singularly perturbed problems with multi-tempo fast variables”, Avtomat. i Telemekh., 2022, no. 11, 3–61 ; Autom. Remote Control, 83:11 (2022), 1679–1723 |
12
|
|
2020 |
6. |
G. A. Kurina, N. T. Hoai, “Projector approach to the Butuzov–Nefedov algorithm for asymptotic solution of a class of singularly perturbed problems in a critical case”, Zh. Vychisl. Mat. Mat. Fiz., 60:12 (2020), 2073–2084 ; Comput. Math. Math. Phys., 60:12 (2020), 2007–2018 |
6
|
|
2016 |
7. |
M. A. Kalashnikova, G. A. Kurina, “Asymptotic solution of linear-quadratic problems with cheap controls of different costs”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 124–139 |
3
|
|
2012 |
8. |
G. A. Kurina, Nguyên Thị Hoài, “Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients”, Zh. Vychisl. Mat. Mat. Fiz., 52:4 (2012), 628–652 ; Comput. Math. Math. Phys., 52:4 (2012), 524–547 |
11
|
|
2011 |
9. |
V. G. Zadorozhniy, G. A. Kurina, “Inverse Problem of the Variational Calculus for Differential Equations of Second Order with Deviating Argument”, Mat. Zametki, 90:2 (2011), 231–241 ; Math. Notes, 90:2 (2011), 218–226 |
2
|
|
2010 |
10. |
G. A. Kurina, Nguyên Thi Hoài, “On a zero order approximation of an asymptotic solution for a singularly perturbed linear-quadratic control problem with discontinuous coefficients”, Model. Anal. Inform. Sist., 17:1 (2010), 93–116 |
2
|
|
2009 |
11. |
G. A. Kurina, E. V. Smirnova, “Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters”, CMFD, 34 (2009), 63–99 ; Journal of Mathematical Sciences, 170:2 (2010), 192–228 |
3
|
|
2006 |
12. |
M. G. Dmitriev, G. A. Kurina, “Singular perturbations in control problems”, Avtomat. i Telemekh., 2006, no. 1, 3–51 ; Autom. Remote Control, 67:1 (2006), 1–43 |
188
|
|
2005 |
13. |
G. A. Kurina, S. S. Shchekunskikh, “Asymptotic Solution of a Nonlinear Periodic Optimal Control Problem Whose State Equation Involves a Singular Matrix Perturbation”, Differ. Uravn., 41:10 (2005), 1332–1344 ; Differ. Equ., 41:10 (2005), 1403–1416 |
1
|
14. |
G. A. Kurina, S. S. Shchekunskikh, “Asymptotics of the solution to a liner-quadratic periodic problem with a singular matrix perturbation in the performance index”, Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005), 603–616 ; Comput. Math. Math. Phys., 45:4 (2005), 579–592 |
3
|
|
2003 |
15. |
G. A. Kurina, “Solvability of a boundary value problem for a nonnegative Hamiltonian system in a Hilbert space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7, 45–47 ; Russian Math. (Iz. VUZ), 47:7 (2003), 45–47 |
16. |
G. A. Kurina, G. V. Martynenko, “Reducibility of a Class of Operator Functions to Block-Diagonal Form”, Mat. Zametki, 74:5 (2003), 789–792 ; Math. Notes, 74:5 (2003), 744–748 |
7
|
|
2001 |
17. |
G. A. Kurina, “Invertibility of Nonnegatively Hamiltonian Operators in a Hilbert Space”, Differ. Uravn., 37:6 (2001), 839–841 ; Differ. Equ., 37:6 (2001), 880–882 |
23
|
18. |
G. A. Kurina, G. V. Martynenko, “On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form”, Differ. Uravn., 37:2 (2001), 212–217 ; Differ. Equ., 37:2 (2001), 227–233 |
7
|
19. |
T. Ya. Azizov, V. K. Kiriakidi, G. A. Kurina, “An Indefinite Approach to the Reduction of a Nonnegative Hamiltonian Operator Function to a Block Diagonal Form”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 73–75 ; Funct. Anal. Appl., 35:3 (2001), 220–221 |
14
|
20. |
G. A. Kurina, “Invertibility of an Operator Appearing in the Control Theory for Linear Systems”, Mat. Zametki, 70:2 (2001), 230–236 ; Math. Notes, 70:2 (2001), 206–212 |
10
|
|
1999 |
21. |
G. A. Kurina, G. V. Martynenko, “On the reducibility of a nonnegatively Hamiltonian real periodic matrix to block-diagonal form”, Mat. Zametki, 66:5 (1999), 688–695 ; Math. Notes, 66:5 (1999), 570–576 |
6
|
|
1996 |
22. |
G. A. Kurina, Kh. A. Ovezov, “Asymptotic analysis of matrix-singularly perturbed linear-quadratic optimal control problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12, 63–74 ; Russian Math. (Iz. VUZ), 40:12 (1996), 60–71 |
2
|
|
1995 |
23. |
G. A. Kurina, “Higher approximations of the small parameter method for weakly
controlled systems”, Dokl. Akad. Nauk, 343:1 (1995), 28–32 |
1
|
24. |
G. A. Kurina, “On behavior of attainable sets of linear systems singularly perturbed by a matrix”, Trudy Mat. Inst. Steklov., 211 (1995), 316–325 ; Proc. Steklov Inst. Math., 211 (1995), 284–294 |
2
|
|
1993 |
25. |
G. A. Kurina, “Sufficient conditions for the optimality of control for discrete descriptor systems”, Avtomat. i Telemekh., 1993, no. 8, 52–55 ; Autom. Remote Control, 54:8 (1993), 1223–1226 |
|
1992 |
26. |
G. A. Kurina, “Splitting of linear systems that are not solved with respect to the derivative”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4, 26–33 ; Russian Math. (Iz. VUZ), 36:4 (1992), 24–31 |
2
|
27. |
G. A. Kurina, “Complete controllability of various-speed singularly perturbed systems”, Mat. Zametki, 52:4 (1992), 56–61 ; Math. Notes, 52:4 (1992), 1029–1033 |
11
|
|
1988 |
28. |
G. A. Kurina, “Asymptotic behavior of the solution of the matrix-singularly perturbed Riccati equation”, Dokl. Akad. Nauk SSSR, 301:1 (1988), 26–30 ; Dokl. Math., 38:1 (1989), 18–22 |
1
|
|
1986 |
29. |
G. A. Kurina, “The Riccati operator equation that is not solved with respect to the derivative”, Differ. Uravn., 22:10 (1986), 1826–1829 |
30. |
G. A. Kurina, “Linear Hamiltonian systems that are not solved with respect to the derivative”, Differ. Uravn., 22:2 (1986), 193–198 |
1
|
|
1985 |
31. |
G. A. Kurina, “Complete controllability of a class of linear singularly perturbed systems”, Differ. Uravn., 21:8 (1985), 1444–1446 |
1
|
|
1984 |
32. |
G. A. Kurina, “Feedback control for linear systems unresolvable for the derivative”, Avtomat. i Telemekh., 1984, no. 6, 37–41 ; Autom. Remote Control, 45:6 (1984), 713–717 |
|
1983 |
33. |
G. A. Kurina, “On a certain classical singularly perturbed problem of optimal control”, Differ. Uravn., 19:4 (1983), 710–711 |
|
1979 |
34. |
G. A. Kurina, “Application of the method of tents to an optimal control problem for a differential equation with a singular matrix multiplying the derivative”, Differ. Uravn., 15:4 (1979), 600–608 |
1
|
|
1977 |
35. |
G. A. Kurina, “On a degenerate optimal control problem and singular perturbations”, Dokl. Akad. Nauk SSSR, 237:3 (1977), 517–520 |
1
|
36. |
G. A. Kurina, “Asymptotic solution of a classical singularly perturbed optimal control problem”, Dokl. Akad. Nauk SSSR, 234:3 (1977), 532–535 |
|
Organisations |
|
|
|
|