Citation:
T. Ya. Azizov, V. K. Kiriakidi, G. A. Kurina, “An Indefinite Approach to the Reduction of a Nonnegative Hamiltonian Operator Function to a Block Diagonal Form”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 73–75; Funct. Anal. Appl., 35:3 (2001), 220–221
\Bibitem{AziKirKur01}
\by T.~Ya.~Azizov, V.~K.~Kiriakidi, G.~A.~Kurina
\paper An Indefinite Approach to the Reduction of a Nonnegative Hamiltonian Operator Function to a Block Diagonal Form
\jour Funktsional. Anal. i Prilozhen.
\yr 2001
\vol 35
\issue 3
\pages 73--75
\mathnet{http://mi.mathnet.ru/faa260}
\crossref{https://doi.org/10.4213/faa260}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1864990}
\zmath{https://zbmath.org/?q=an:1017.47011}
\transl
\jour Funct. Anal. Appl.
\yr 2001
\vol 35
\issue 3
\pages 220--221
\crossref{https://doi.org/10.1023/A:1012331029364}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172598500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035735206}
Linking options:
https://www.mathnet.ru/eng/faa260
https://doi.org/10.4213/faa260
https://www.mathnet.ru/eng/faa/v35/i3/p73
This publication is cited in the following 14 articles:
Li L., Chen A., Wu D.Yu., “Symplectic Self-Adjointness of Infinite Dimensional Hamiltonian Operators”, Acta. Math. Sin.-English Ser., 34:9 (2018), 1473–1484
J. Huang, J. Liu, A. Chen, “Symmetry of the Quadratic Numerical Range
and Spectral Inclusion Properties
of Hamiltonian Operator Matrices”, Math. Notes, 103:6 (2018), 1007–1013
Chen A., Jin GuoHai, Wu Deyu, “On Symplectic Self-Adjointness of Hamiltonian Operator Matrices”, Sci. China-Math., 58:4 (2015), 821–828
利君 闫, “Imaginary Axis Symmetry of the Point Spectrum of the Diagonal Infinite Dimensional Hamiltonian Operators”, AAM, 04:04 (2015), 307
Azizov T.Ya., Dijksma A., Gridneva I.V., “Conditional Reducibility of Certain Unbounded Nonnegative Hamiltonian Operator Functions”, Integr. Equ. Oper. Theory, 73:2 (2012), 273–303
Wu D., Chen A., “Invertibility of nonnegative Hamiltonian operator with unbounded entries”, J Math Anal Appl, 373:2 (2011), 410–413
Alatancang, Huang JunJie, Fan XiaoYing, “Structure of the spectrum of infinite dimensional Hamiltonian operators”, Sci. China Ser. A, 51:5 (2008), 915–924
M. G. Dmitriev, G. A. Kurina, “Singular perturbations in control problems”, Autom. Remote Control, 67:1 (2006), 1–43
G. A. Kurina, S. S. Shchekunskikh, “Asymptotics of the solution to a liner-quadratic periodic problem with a singular matrix perturbation in the performance index”, Comput. Math. Math. Phys., 45:4 (2005), 579–592
G. A. Kurina, S. S. Shchekunskikh, “Asymptotic Solution of a Nonlinear Periodic Optimal Control Problem Whose State Equation Involves a Singular Matrix Perturbation”, Differ. Equ., 41:10 (2005), 1403–1416
G. A. Kurina, G. V. Martynenko, “Reducibility of a Class of Operator Functions to Block-Diagonal Form”, Math. Notes, 74:5 (2003), 744–748
Azizov T.Ya., Dijksma A., Gridneva I.V., “On the boundedness of Hamiltonian operators”, Proc. Amer. Math. Soc., 131:2 (2003), 563–576