Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kurina, Galina Alekseevna

Statistics Math-Net.Ru
Total publications: 35
Scientific articles: 35

Number of views:
This page:2518
Abstract pages:9065
Full texts:3572
References:896
Professor
Doctor of physico-mathematical sciences
E-mail: ,

https://www.mathnet.ru/eng/person18351
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/207371

Publications in Math-Net.Ru Citations
2024
1. G. A. Kurina, N. T. Hoai, “New algorithm for constructing asymptotic solutions of singularly perturbed optimal control problems with intersecting trajectories of the degenerate state equation”, Math. Notes, 116:2 (2024), 303–321  mathnet
2023
2. G. A. Kurina, N. T. Hoai, “A new algorithm of constructing asymptotic solution of singularly perturbed optimal control problems with intersecting trajectories of degenerate state equation”, Applied Mathematics & Physics, 55:4 (2023),  313–329  mathnet
3. G. A. Kurina, N. T. Hoai, “Zero-Order Asymptotics for the Solution of One Type of Singularly Perturbed Linear–Quadratic Control Problems in the Critical Case”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023),  127–142  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S154–S169  isi  scopus
2022
4. G. A. Kurina, M. A. Kalashnikova, “Singularly perturbed problems with multi-tempo fast variables”, Avtomat. i Telemekh., 2022, no. 11,  3–61  mathnet; Autom. Remote Control, 83:11 (2022), 1679–1723 11
2020
5. G. A. Kurina, N. T. Hoai, “Projector approach to the Butuzov–Nefedov algorithm for asymptotic solution of a class of singularly perturbed problems in a critical case”, Zh. Vychisl. Mat. Mat. Fiz., 60:12 (2020),  2073–2084  mathnet  elib; Comput. Math. Math. Phys., 60:12 (2020), 2007–2018  isi  scopus 6
2016
6. M. A. Kalashnikova, G. A. Kurina, “Asymptotic solution of linear-quadratic problems with cheap controls of different costs”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  124–139  mathnet  mathscinet  elib 3
2012
7. G. A. Kurina, Nguyên Thị Hoài, “Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients”, Zh. Vychisl. Mat. Mat. Fiz., 52:4 (2012),  628–652  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 52:4 (2012), 524–547  isi  elib  scopus 11
2011
8. V. G. Zadorozhniy, G. A. Kurina, “Inverse Problem of the Variational Calculus for Differential Equations of Second Order with Deviating Argument”, Mat. Zametki, 90:2 (2011),  231–241  mathnet  mathscinet; Math. Notes, 90:2 (2011), 218–226  isi  scopus 2
2010
9. G. A. Kurina, Nguyên Thi Hoài, “On a zero order approximation of an asymptotic solution for a singularly perturbed linear-quadratic control problem with discontinuous coefficients”, Model. Anal. Inform. Sist., 17:1 (2010),  93–116  mathnet 2
2009
10. G. A. Kurina, E. V. Smirnova, “Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters”, CMFD, 34 (2009),  63–99  mathnet  mathscinet; Journal of Mathematical Sciences, 170:2 (2010), 192–228  scopus 3
2006
11. M. G. Dmitriev, G. A. Kurina, “Singular perturbations in control problems”, Avtomat. i Telemekh., 2006, no. 1,  3–51  mathnet  mathscinet  zmath  elib; Autom. Remote Control, 67:1 (2006), 1–43  elib  scopus 186
2005
12. G. A. Kurina, S. S. Shchekunskikh, “Asymptotic Solution of a Nonlinear Periodic Optimal Control Problem Whose State Equation Involves a Singular Matrix Perturbation”, Differ. Uravn., 41:10 (2005),  1332–1344  mathnet  mathscinet; Differ. Equ., 41:10 (2005), 1403–1416 1
13. G. A. Kurina, S. S. Shchekunskikh, “Asymptotics of the solution to a liner-quadratic periodic problem with a singular matrix perturbation in the performance index”, Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  603–616  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:4 (2005), 579–592 3
2003
14. G. A. Kurina, “Solvability of a boundary value problem for a nonnegative Hamiltonian system in a Hilbert space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7,  45–47  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 47:7 (2003), 45–47
15. G. A. Kurina, G. V. Martynenko, “Reducibility of a Class of Operator Functions to Block-Diagonal Form”, Mat. Zametki, 74:5 (2003),  789–792  mathnet  mathscinet  zmath; Math. Notes, 74:5 (2003), 744–748  isi 7
2001
16. G. A. Kurina, “Invertibility of Nonnegatively Hamiltonian Operators in a Hilbert Space”, Differ. Uravn., 37:6 (2001),  839–841  mathnet  mathscinet; Differ. Equ., 37:6 (2001), 880–882 23
17. G. A. Kurina, G. V. Martynenko, “On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form”, Differ. Uravn., 37:2 (2001),  212–217  mathnet  mathscinet; Differ. Equ., 37:2 (2001), 227–233 7
18. T. Ya. Azizov, V. K. Kiriakidi, G. A. Kurina, “An Indefinite Approach to the Reduction of a Nonnegative Hamiltonian Operator Function to a Block Diagonal Form”, Funktsional. Anal. i Prilozhen., 35:3 (2001),  73–75  mathnet  mathscinet  zmath; Funct. Anal. Appl., 35:3 (2001), 220–221  isi  scopus 14
19. G. A. Kurina, “Invertibility of an Operator Appearing in the Control Theory for Linear Systems”, Mat. Zametki, 70:2 (2001),  230–236  mathnet  mathscinet  zmath; Math. Notes, 70:2 (2001), 206–212  isi 10
1999
20. G. A. Kurina, G. V. Martynenko, “On the reducibility of a nonnegatively Hamiltonian real periodic matrix to block-diagonal form”, Mat. Zametki, 66:5 (1999),  688–695  mathnet  mathscinet  zmath; Math. Notes, 66:5 (1999), 570–576  isi 6
1996
21. G. A. Kurina, Kh. A. Ovezov, “Asymptotic analysis of matrix-singularly perturbed linear-quadratic optimal control problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 12,  63–74  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 40:12 (1996), 60–71 2
1995
22. G. A. Kurina, “Higher approximations of the small parameter method for weakly controlled systems”, Dokl. Akad. Nauk, 343:1 (1995),  28–32  mathnet  mathscinet  zmath 1
23. G. A. Kurina, “On behavior of attainable sets of linear systems singularly perturbed by a matrix”, Trudy Mat. Inst. Steklov., 211 (1995),  316–325  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 211 (1995), 284–294 1
1993
24. G. A. Kurina, “Sufficient conditions for the optimality of control for discrete descriptor systems”, Avtomat. i Telemekh., 1993, no. 8,  52–55  mathnet  mathscinet  zmath; Autom. Remote Control, 54:8 (1993), 1223–1226
1992
25. G. A. Kurina, “Splitting of linear systems that are not solved with respect to the derivative”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4,  26–33  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 36:4 (1992), 24–31 1
26. G. A. Kurina, “Complete controllability of various-speed singularly perturbed systems”, Mat. Zametki, 52:4 (1992),  56–61  mathnet  mathscinet  zmath; Math. Notes, 52:4 (1992), 1029–1033  isi 11
1988
27. G. A. Kurina, “Asymptotic behavior of the solution of the matrix-singularly perturbed Riccati equation”, Dokl. Akad. Nauk SSSR, 301:1 (1988),  26–30  mathnet  mathscinet  zmath; Dokl. Math., 38:1 (1989), 18–22 1
1986
28. G. A. Kurina, “The Riccati operator equation that is not solved with respect to the derivative”, Differ. Uravn., 22:10 (1986),  1826–1829  mathnet  mathscinet  zmath
29. G. A. Kurina, “Linear Hamiltonian systems that are not solved with respect to the derivative”, Differ. Uravn., 22:2 (1986),  193–198  mathnet  mathscinet 1
1985
30. G. A. Kurina, “Complete controllability of a class of linear singularly perturbed systems”, Differ. Uravn., 21:8 (1985),  1444–1446  mathnet  mathscinet  zmath 1
1984
31. G. A. Kurina, “Feedback control for linear systems unresolvable for the derivative”, Avtomat. i Telemekh., 1984, no. 6,  37–41  mathnet  mathscinet  zmath; Autom. Remote Control, 45:6 (1984), 713–717
1983
32. G. A. Kurina, “On a certain classical singularly perturbed problem of optimal control”, Differ. Uravn., 19:4 (1983),  710–711  mathnet  zmath
1979
33. G. A. Kurina, “Application of the method of tents to an optimal control problem for a differential equation with a singular matrix multiplying the derivative”, Differ. Uravn., 15:4 (1979),  600–608  mathnet  mathscinet  zmath 1
1977
34. G. A. Kurina, “On a degenerate optimal control problem and singular perturbations”, Dokl. Akad. Nauk SSSR, 237:3 (1977),  517–520  mathnet  mathscinet  zmath 1
35. G. A. Kurina, “Asymptotic solution of a classical singularly perturbed optimal control problem”, Dokl. Akad. Nauk SSSR, 234:3 (1977),  532–535  mathnet  mathscinet  zmath

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024