Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Fedoryaeva, Tatiana Ivanovna

Total publications: 60 (58)
in MathSciNet: 24 (24)
in zbMATH: 21 (20)
in Web of Science: 7 (7)
in Scopus: 14 (14)
Cited articles: 20
Citations: 85

Number of views:
This page:4261
Abstract pages:7413
Full texts:2286
References:778
Associate professor
Candidate of physico-mathematical sciences (1996)
Speciality: 01.01.09 (Discrete mathematics and mathematical cybernetics)
E-mail: ,
Keywords: graphs, diameter, diametral vertices, central vertices, center, almost all graphs, typical graphs, metric ball and sphere, number of balls, diversity vector of balls
UDC: 519.1, 519.17, 519.7, 519.173, 519.176, 519.178

Subject:

graphs, metric properties of graphs, typical graphs, typical properties of graphs, combinatorics, combinatorial analysis

   
Main publications:
  • T. I. Fedoryaeva, “Center and its spectrum of almost all n-vertex graphs of given diameter”, Siberian Electronic Mathematical Reports, 2021, 511-529
  • T. I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, Journal of Applied and Industrial Mathematics, 11:2 (2017), 204-211
  • T. I. Fedoryaeva, “Structure of the diversity vector of balls of a typical graph with given diameter”, Sib. Electr. Math. Reports, 13 (2016), 375–387.
  • T. I. Fedoryaeva, “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, Journal of Applied and Industrial Mathematics, 7:2 (2013), 153-165
  • T. I. Fedoryaeva, "Combinatorial algorithms", Novosibirsk, 2011, ISBN: 978-5-4437-0019-9 , 118 pp.
  • T. I. Fedoryaeva, “Exact upper estimates of the number of different balls of given radius for the graphs with fixed number of vertexes and diameter”, Diskret. Analysis and Oper. Reseach, 16:6 (2009), 74–92.
  • T. I. Fedoryaeva, “Diversity vectors of balls in graphs and estimates of the components of the vectors”, Journal of Applied and Industrial Mathematics, 2:3 (2008), 341–356.
  • T. I. Fedoryaeva, “Variety of balls in metric spaces of trees”, Diskret. Analysis and Oper. Reseach, 12:3 (2005), 74–84.
  • T. I. Fedoryaeva, “Outerplanar graphs with the metric continuation property. I, II”, Diskret. Analysis and Oper. Reseach, 7:1 (2000), 83–112; Diskret. Analysis and Oper. Reseach, 8:1 (2001), 88–112.

https://www.mathnet.ru/eng/person17964
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/289868
https://elibrary.ru/author_items.asp?spin=1708-5262
https://orcid.org/0000-0002-5246-0522
https://www.scopus.com/authid/detail.url?authorId=25029805000

Full list of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

Articles

1. T. I. Fedoryaeva, “On binomial coefficients of real arguments”, Siberian Electronic Mathematical Reports, 20:1 (2023), 514–523  mathnet  crossref  mathscinet  isi  elib  scopus
2. T. I. Fedoryaeva, “On Binomial coefficients of real arguments”, 2022 (Published online) , arXiv: 2206.03007  mathnet  crossref
3. T.I.Fedoryaeva, “Tipichnye metricheskie svoistva n-vershinnykh grafov zadannogo diametra”, “Diskretnaya matematika i ee prilozheniya”, Materialy XIV Mezhdunarodnogo seminara “Diskretnaya matematika i ee prilozheniya” imeni akademika O.B. Lupanova (Moskva, MGU, 20–25 iyunya 2022g.), Pod redaktsiei V.V. Kochergina, IPM im. Keldysha, Moskva, 2022, 21–33  mathnet  crossref  mathscinet  elib
4. T. I. Fedoryaeva, “Logarithmic asymptotics of the number of central vertices of almost all n-vertex graphs of diameter k”, Siberian Electronic Mathematical Reports, 19:2 (2022), 747–761  mathnet  crossref  mathscinet  isi  elib  scopus 1
5. T.I. Fedoryaeva, “Logarifmicheskaya asimptotika chisla tsentralnykh vershin pochti vsekh n-vershinnykh grafov zadannogo diametra”, Nauchnaya konferentsiya sotrudnikov IM SO RAN, posvyaschennaya podvedeniyu itogov 2022 goda (Novosibirsk, 5–6 Dekabrya 2022 g.), Institut matematiki im. S.L. Soboleva, Novosibirsk, 2022 http://www.math.nsc.ru/sites/default/files/2022-12/programm5-6.pdf  mathnet
6. T. I. Fedoryaeva, “On radius and typical properties of n-vertex graphs of given diameter”, Siberian Electronic Mathematical Reports, 2021, 345-357  mathnet  crossref  mathscinet  zmath  isi  elib  scopus 3
7. T. I. Fedoryaeva, “Center and its spectrum of almost all n-vertex graphs of given diameter”, Siberian Electronic Mathematical Reports, 2021, 511-529  mathnet  crossref  mathscinet  zmath  isi  elib  scopus 2
8. T.I. Fedoryaeva, “Classification of graphs of diameter 2”, Conference “Women in Mathematics” (Novosibirsk, Russia, May 12, 2021), Sobolev Institute of Mathematics, Novosibirsk State University and Mathematical Center in Akademgorodok, Novosibirsk, 2021 http://math.nsc.ru/LBRT/d5/conference/WM/2021/Talks/T_Fedoryaeva.pdf  mathnet
9. T.I. Fedoryaeva, “Radius of almost all n-vertex graphs of given diameter”, Materialy XIX mezhdunarodnoi konferentsii “Problemy teoreticheskoi kibernetiki”. (Kazan, Rossiya, 28 Sentyabrya - 01 Oktyabrya, 2021), Kazanskii federalnyi universitet, Kazan, 2021, 132-135  mathnet
10. T. I. Fedoryaeva, “Classification of graphs of diameter 2”, Siberian Electronic Mathematical Reports, 2020, 502–512  mathnet  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
11. T.I. Fedoryaeva, “Graphs of diameter 2 and their diametral vertices”, Proceedings of the International Conference “2020 Ural Workshop on Group Theory and Combinatorics”. (Yekaterinburg, Russia, August 24-30, 2020), Institute of Natural Sciences and Mathematics of Ural Federal University, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, The Ural Mathematical Center, Yekaterinburg, 2020, P.41  mathnet
12. A. A. Evdokimov, T. I. Fedoryaeva, “Tree-like structure graphs with full diversity of balls”, J. Appl. Industr. Math., 12:1 (2018), 19-27  mathnet  crossref  crossref  mathscinet  zmath  elib  scopus
13. A. A. Evdokimov, T. I. Fedoryaeva, “Tree-like structure graphs with full diversity of balls”, J. Appl. Industr. Math., 12:1 (2018), 19-27  crossref  mathscinet  zmath  scopus
14. T. I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, J. Appl. Industr. Math., 11:2 (2017), 204-214  mathnet  crossref  crossref  mathscinet  zmath  elib  elib  scopus
15. T.I.Fedoryaeva, “Vektor raznoobraziya sharov tipichnogo grafa zadannogo diametra”, Matematika v sovremennom mire. Tezisy dokladov Mezhdunarodnoi konferentsii, posvyaschennoi 60-letiyu Instituta matematiki im. S.L.Soboleva (Novosibirsk, 14–19 avgusta 2017 g.), Izdatelstvo Instituta matematiki, 2017, 457 http://math.nsc.ru/conference/mmw/2017/Book_Abstract.pdf  mathnet  elib
16. T. I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, J. Appl. Industr. Math., 11:2 (2017), 204-214  crossref  mathscinet  zmath  elib  scopus 1
17. T. I. Fedoryaeva, “Structure of the diversity vector of balls of a typical graph with given diameter”, Sib. Èlektron. Mat. Izv., 13 (2016), 375–387  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
18. T. I. Fedoryaeva, “Computing the diversity vectors of balls of a given graph”, Sib. Èlektron. Mat. Izv., 13 (2016), 122–129  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
19. T.I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs with given diameter”, Proceedings of the International Conference and PhD-Master Summer School on Graphs and Groups, Spectra and Symmetries. (Novosibirsk: Sobolev Institute of Mathematics), Sobolev Institute of Mathematics & Novosibirsk State University, Novosibirsk, 2016, P.55  mathnet
20. A. A. Evdokimov, E. P. Kutcenogaya, T. I. Fedoryaeva, “On the full diversity of balls for graphs”, Prikl. Diskr. Mat. Suppl., 2016, no. 9, 110–112 http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=pdma&paperid=268&option_lang=eng  mathnet  crossref  elib  scopus
21. T. I. Fedoryaeva, “On the diversity of balls in a typical graph of a given diameter”, Prikl. Diskr. Mat. Suppl., 2015, no. 8, 127–128  mathnet  crossref  elib
22. T. I. Fedoryaeva, “The diversity vector of balls of a typical graph of small diameter”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 43–54  mathnet  crossref  mathscinet  zmath  elib
23. A. A. Evdokimov, T. I. Fedoryaeva, “On the problem of characterizing the diversity vectors of balls”, J. Appl. Industr. Math., 8:2 (2014), 190–195  mathnet  crossref  mathscinet  elib  elib  scopus
24. A. A. Evdokimov, T. I. Fedoryaeva, “On the problem of characterizing the diversity vectors of balls”, Journal of Applied and Industrial Mathematics, 8:2 (2014), 190-195  mathnet  crossref  mathscinet  zmath  elib  scopus
25. Fedoryaeva T.I. (sovmestno s Evdokimovym A.A.), “O graficheskom raznoobrazii sharov”, Problemy teoreticheskoi kibernetiki, materialy XVII mezhdunarodnoi konferentsii (Kazan, 2014), Otechestvo, Kazan, 2014, 77-80 http://elibrary.ru/item.asp?id=23739366  mathnet  elib
26. T. I. Fedoryaeva, “Majorants and minorants in the graph class with given number of vertices and diameter”, J. Appl. Industr. Math., 7:2 (2013), 153–165  mathnet  crossref  mathscinet  elib  elib
27. T. I. Fedoryaeva, “Mazhoranty i minoranty klassa n-vershinnykh grafov diametra d”, Materialy mezhdunarodnoi konferentsii “Diskret. optimizatsiya i issled. operatsii” (Novosibirsk, 24–28 iyunya 2013 g.), Izdatelstvo Instituta matematiki, Novosibirsk, 2013, 114 http://math.nsc.ru/conference/door/2013/Book  mathnet  elib  elib
28. T. I. Fedoryaeva, “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, Journal of Applied and Industrial Mathematics, 7:2 (2013), 153-165  mathnet  crossref  mathscinet  zmath  elib  scopus
29. T. I. Fedoryaeva, “Raznoobrazie sharov v grafakh s fiksirovannymi chislom vershin i diametrom”, Problemy teoreticheskoi kibernetiki, Izdatelstvo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2011, 491–495  mathnet  elib
30. T. I. Fedoryaeva, “On the graphs with given diameter, number of vertices, and local diversity of balls”, Journal of Applied and Industrial Mathematics, 5:1 (2011), 44–50  crossref  mathscinet  zmath  elib  scopus 1
31. T. I. Fedoryaeva, “On graphs with given diameter, number of vertices, and local diversity of balls”, J. Appl. Industr. Math., 5:1 (2011), 44–50  mathnet  crossref  mathscinet  zmath  elib  elib  scopus
32. T. I. Fedoryaeva, “Exact upper estimates of the number of different balls of given radius for the graphs with fixed number of vertexes and diameter”, Diskretn. Anal. Issled. Oper., 16:6 (2009), 74–92  mathnet  mathscinet  zmath  elib
33. T. I. Fedoryaeva, “Tochnye verkhnie otsenki komponent vektorov raznoobraziya sharov dlya grafov s zadannymi chislom vershin i diametrom”, Materialy XVII Mezhdunar. shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem” im. akademika O.B.Lupanova., Izdatelstvo Instituta matematiki, Novosibirsk, 2008, 167–172  elib
34. T. I. Fedoryaeva, “Diversity vectors of balls in graphs and estimates of the components of the vectors”, Journal of Applied and Industrial Mathematics, 2:3 (2008), 341–356  mathnet  crossref  mathscinet  zmath  elib  scopus
35. T. I. Fedoryaeva, J. Appl. Industr. Math., 2:3 (2008), 341–356  mathnet  crossref  mathscinet  zmath  elib  elib  scopus
36. T. I. Fedoryaeva, “Vektory raznoobraziya sharov i svoistva ikh komponent”, Trudy VII Mezhdunarodnoi konferentsii “Diskretnye modeli v teorii upravlyayuschikh sistem”, MGU, Moskva, 2006, 374-378  mathnet  elib
37. T. I. Fedoryaeva, “Variety of balls in metric spaces of trees”, Diskretn. Anal. Issled. Oper., 12:3 (2005), 74–84  mathnet  mathscinet  zmath  elib
38. T. I. Fedoryaeva, “O raznoobrazii metricheskikh sharov v grafakh”, Problemy teoreticheskoi kibernetiki, Tezisy dokladov XIV Mezhdunarodnoi konferentsii (Penza, 23–28 maya 2005 g.), Izd-vo mekh.-mat. fak-ta MGU, Moskva, 2005, 158 http://new.math.msu.su/department/dm/dmmc/CONF/14k_tez.pdf  mathnet
39. T. I. Fedoryaeva, “The property of metric continuation of the shortest paths in graphs”, Diskretn. Anal. Issled. Oper., 11:4 (2004), 56–67  mathnet  mathscinet  zmath  elib
40. T. I. Fedoryaeva, “Grafy, imeyuschie prodolzhenie kratchaishikh tsepei”, Materialy XV Mezhdunar. shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem” (Moskva, 18–23 oktyabrya 2004 g.), Izd-vo mekh.-mat. fak-ta MGU, Moskva, 2004, 105–109
41. T. I. Fedoryaeva, “Svoistvo metricheskogo prodolzheniya kratchaishikh tsepei”, Materialy konferentsii “Diskret. analiz i issled. operatsii” (Novosibirsk, 28 iyunya-2 iyulya 2004 g.), Izdatelstvo Instituta matematiki, Novosibirsk, 2004, 81  elib
42. T. I. Fedoryaeva, “Outerplanar graphs with the metric continuity property. II”, Diskretn. Anal. Issled. Oper., 8:1 (2001), 88–112  mathnet  mathscinet  zmath  elib
43. T. I. Fedoryaeva, “Outerplanar graphs with the metric continuation property. I”, Diskretn. Anal. Issled. Oper., 7:1 (2000), 83–112  mathnet  mathscinet  zmath  elib
44. T. I. Fedoryaeva, “Operations and Isometric Embeddings of Graphs Related to the Metric Prolongation Property”, Mathematics and Its Applications, 391, Operations Research and Discrete Analysis (1997), 31–49  crossref  mathscinet  elib
45. T. I. Fedoryaeva, “Izometricheskie vlozheniya grafov i operatsii grafov, svyazannye so svoistvom prodolzheniya metriki”, Materialy XI Mezhdunar. konf. po probl. teoret. kiber. (Ulyanovsk, 10–14 iyulya 1996 g.), Ros. gos. gumanit. un-t, Moskva, 1996, 196–197
46. T. I. Fedoryaeva, “Svoistvo prodolzheniya metriki i porog otdelimosti otobrazhenii”, Materialy XI Mezhdunar. konf. po probl. teoret. kiber. (Ulyanovsk,, 10–14 iyulya 1996 g.), Ros. gos. gumanit. un-t, Moskva, 1996, 194–195
47. T. I. Fedoryaeva, “Operatsii i izometricheskie vlozheniya grafov, svyazannye so svoistvom prodolzheniya metriki”, Diskretn. analiz i issled. oper., 2:3 (1995), 49–67  mathnet  mathscinet  zmath 6
48. T. I. Fedoryaeva, “Kharakterizatsiya klassov grafov so svoistvom prodolzheniya metriki”, Metody i sistemy tekhnicheskoi diagnostiki, Materialy X Mezhdunar. konf. po probl. teoret. kib., 18, Izdatelstvo Saratovskogo gosuniversitete, Saratov, 1993, 175
49. T. I. Fedoryaeva, “Usilennye svoistva prodolzheniya metriki”, Metody diskretnogo analiza v teorii grafov i slozhnosti, 1992, no. 52, 112–118  mathscinet  zmath
50. T. I. Fedoryaeva, “Kharakterizatsiya odnogo klassa grafov so svoistvom prodolzheniya metriki”, Metody diskretnogo analiza v issledovanii funktsionalnykh sistem, 1988, no. 47, 89-93  mathscinet  zmath
51. T. I. Fedoryaeva, D. M. Smirnov, “O reshetkakh kongruents-klassov regulyarnykh algebr”, Materialy XIX Vsesoyuzn. algebraicheskaya konf. (Lvov.), Lvov, 1987, 262

Books

52. T. I. Fedoryaeva, Kombinatornye algoritmy, Izd-vo NGU, Novosibirsk, 2011 , 118 pp.  mathnet  elib

Thesis

53. T. I. Fedoryaeva, Grafy, udovletvoryayuschie svoistvu prodolzheniya metriki, Avtoreferat Diss.kand. fiz.-matem. nauk, Institut matematiki SO RAN, Novosibirsk, 1996 , 12 pp.  elib
54. T. I. Fedoryaeva, Grafy, udovletvoryayuschie svoistvu prodolzheniya metriki, Diss. kand. fiz.-matem. nauk, Izdatelstvo Instituta matematiki, Novosibirsk, 1996 , 109 pp.  elib

Proceedings

55. T. I. Fedoryaeva, “Otsenki chisla razlichnykh sharov zadannogo radiusa v grafakh”, Matematika v sovremennom mire, Rossiiskaya konf., posvyaschennaya 50-letiyu IM SO RAN (Novosibirsk, 17–22 sentyabrya 2007 g.), Izdatelstvo Instituta matematiki, Novosibirsk, 2007, 290 http://www.mathnet.ru/php/conference.phtml?confid=34&option_lang=rus

Preprints

56. T. I. Fedoryaeva, Vneshneplanarnye grafy, udovletvoryayuschie svoistvu prodolzheniya metriki.I, Preprint № 1, Izdatelstvo Instituta matematiki, Novosibirsk, 1995 , 50 pp.
57. T. I. Fedoryaeva, Vneshneplanarnye grafy, udovletvoryayuschie svoistvu prodolzheniya metriki.II, Preprint № 2, Izdatelstvo Instituta matematiki, Novosibirsk, 1995 , 28 pp.
58. T. I. Fedoryaeva, Vneshneplanarnye grafy, udovletvoryayuschie svoistvu prodolzheniya metriki.III, Preprint № 3, Izdatelstvo Instituta matematiki, Novosibirsk, 1995 , 50 pp.

Popular science or education materials

59. T. I. Fedoryaeva, Rabochaya programma distsipliny DISKRETNAYa MATEMATIKA, Novosibirskii gosudarstvennyi universitet, Novosibirsk, 2020 , 20 pp.  mathnet

Information matherials

60. A. A. Evdokimov, C. V. Avgustinovich, A. D. Korshunov, Yu. V. Merekin, V. V. Nyu, A. L. Perezhogin, T. I. Fedoryaeva, A. E. Frid, “Metricheskie i kombinatornye voprosy diskretnogo analiza”, Nir/Niokr, 1996.  zmath  elib

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024