Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Fedoryaeva, Tatiana Ivanovna

Total publications: 60 (58)
in MathSciNet: 24 (24)
in zbMATH: 21 (20)
in Web of Science: 7 (7)
in Scopus: 14 (14)
Cited articles: 20
Citations: 85

Number of views:
This page:4261
Abstract pages:7413
Full texts:2286
References:778
Associate professor
Candidate of physico-mathematical sciences (1996)
Speciality: 01.01.09 (Discrete mathematics and mathematical cybernetics)
E-mail: ,
Keywords: graphs, diameter, diametral vertices, central vertices, center, almost all graphs, typical graphs, metric ball and sphere, number of balls, diversity vector of balls
UDC: 519.1, 519.17, 519.7, 519.173, 519.176, 519.178

Subject:

graphs, metric properties of graphs, typical graphs, typical properties of graphs, combinatorics, combinatorial analysis

   
Main publications:
  • T. I. Fedoryaeva, “Center and its spectrum of almost all n-vertex graphs of given diameter”, Siberian Electronic Mathematical Reports, 2021, 511-529
  • T. I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, Journal of Applied and Industrial Mathematics, 11:2 (2017), 204-211
  • T. I. Fedoryaeva, “Structure of the diversity vector of balls of a typical graph with given diameter”, Sib. Electr. Math. Reports, 13 (2016), 375–387.
  • T. I. Fedoryaeva, “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, Journal of Applied and Industrial Mathematics, 7:2 (2013), 153-165
  • T. I. Fedoryaeva, "Combinatorial algorithms", Novosibirsk, 2011, ISBN: 978-5-4437-0019-9 , 118 pp.
  • T. I. Fedoryaeva, “Exact upper estimates of the number of different balls of given radius for the graphs with fixed number of vertexes and diameter”, Diskret. Analysis and Oper. Reseach, 16:6 (2009), 74–92.
  • T. I. Fedoryaeva, “Diversity vectors of balls in graphs and estimates of the components of the vectors”, Journal of Applied and Industrial Mathematics, 2:3 (2008), 341–356.
  • T. I. Fedoryaeva, “Variety of balls in metric spaces of trees”, Diskret. Analysis and Oper. Reseach, 12:3 (2005), 74–84.
  • T. I. Fedoryaeva, “Outerplanar graphs with the metric continuation property. I, II”, Diskret. Analysis and Oper. Reseach, 7:1 (2000), 83–112; Diskret. Analysis and Oper. Reseach, 8:1 (2001), 88–112.

https://www.mathnet.ru/eng/person17964
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/289868
https://elibrary.ru/author_items.asp?spin=1708-5262
https://orcid.org/0000-0002-5246-0522
https://www.scopus.com/authid/detail.url?authorId=25029805000

Full list of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

   2023
1. T. I. Fedoryaeva, “On binomial coefficients of real arguments”, Siberian Electronic Mathematical Reports, 20:1 (2023), 514–523  mathnet  crossref  mathscinet  isi  elib  scopus

   2022
2. T. I. Fedoryaeva, “On Binomial coefficients of real arguments”, 2022 (Published online) , arXiv: 2206.03007  mathnet  crossref
3. T.I.Fedoryaeva, “Tipichnye metricheskie svoistva n-vershinnykh grafov zadannogo diametra”, “Diskretnaya matematika i ee prilozheniya”, Materialy XIV Mezhdunarodnogo seminara “Diskretnaya matematika i ee prilozheniya” imeni akademika O.B. Lupanova (Moskva, MGU, 20–25 iyunya 2022g.), Pod redaktsiei V.V. Kochergina, IPM im. Keldysha, Moskva, 2022, 21–33  mathnet  crossref  mathscinet  elib
4. T. I. Fedoryaeva, “Logarithmic asymptotics of the number of central vertices of almost all n-vertex graphs of diameter k”, Siberian Electronic Mathematical Reports, 19:2 (2022), 747–761  mathnet  crossref  mathscinet  isi  elib  scopus 1
5. T.I. Fedoryaeva, “Logarifmicheskaya asimptotika chisla tsentralnykh vershin pochti vsekh n-vershinnykh grafov zadannogo diametra”, Nauchnaya konferentsiya sotrudnikov IM SO RAN, posvyaschennaya podvedeniyu itogov 2022 goda (Novosibirsk, 5–6 Dekabrya 2022 g.), Institut matematiki im. S.L. Soboleva, Novosibirsk, 2022 http://www.math.nsc.ru/sites/default/files/2022-12/programm5-6.pdf  mathnet

   2021
6. T. I. Fedoryaeva, “On radius and typical properties of n-vertex graphs of given diameter”, Siberian Electronic Mathematical Reports, 2021, 345-357  mathnet  crossref  mathscinet  zmath  isi  elib  scopus 3
7. T. I. Fedoryaeva, “Center and its spectrum of almost all n-vertex graphs of given diameter”, Siberian Electronic Mathematical Reports, 2021, 511-529  mathnet  crossref  mathscinet  zmath  isi  elib  scopus 2
8. T.I. Fedoryaeva, “Classification of graphs of diameter 2”, Conference “Women in Mathematics” (Novosibirsk, Russia, May 12, 2021), Sobolev Institute of Mathematics, Novosibirsk State University and Mathematical Center in Akademgorodok, Novosibirsk, 2021 http://math.nsc.ru/LBRT/d5/conference/WM/2021/Talks/T_Fedoryaeva.pdf  mathnet
9. T.I. Fedoryaeva, “Radius of almost all n-vertex graphs of given diameter”, Materialy XIX mezhdunarodnoi konferentsii “Problemy teoreticheskoi kibernetiki”. (Kazan, Rossiya, 28 Sentyabrya - 01 Oktyabrya, 2021), Kazanskii federalnyi universitet, Kazan, 2021, 132-135  mathnet

   2020
10. T. I. Fedoryaeva, “Classification of graphs of diameter 2”, Siberian Electronic Mathematical Reports, 2020, 502–512  mathnet  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
11. T.I. Fedoryaeva, “Graphs of diameter 2 and their diametral vertices”, Proceedings of the International Conference “2020 Ural Workshop on Group Theory and Combinatorics”. (Yekaterinburg, Russia, August 24-30, 2020), Institute of Natural Sciences and Mathematics of Ural Federal University, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, The Ural Mathematical Center, Yekaterinburg, 2020, P.41  mathnet
12. T. I. Fedoryaeva, Rabochaya programma distsipliny DISKRETNAYa MATEMATIKA, Novosibirskii gosudarstvennyi universitet, Novosibirsk, 2020 , 20 pp.  mathnet

   2018
13. A. A. Evdokimov, T. I. Fedoryaeva, “Tree-like structure graphs with full diversity of balls”, J. Appl. Industr. Math., 12:1 (2018), 19-27  mathnet  crossref  crossref  mathscinet  zmath  elib  scopus
14. A. A. Evdokimov, T. I. Fedoryaeva, “Tree-like structure graphs with full diversity of balls”, J. Appl. Industr. Math., 12:1 (2018), 19-27  crossref  mathscinet  zmath  scopus

   2017
15. T. I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, J. Appl. Industr. Math., 11:2 (2017), 204-214  mathnet  crossref  crossref  mathscinet  zmath  elib  elib  scopus
16. T.I.Fedoryaeva, “Vektor raznoobraziya sharov tipichnogo grafa zadannogo diametra”, Matematika v sovremennom mire. Tezisy dokladov Mezhdunarodnoi konferentsii, posvyaschennoi 60-letiyu Instituta matematiki im. S.L.Soboleva (Novosibirsk, 14–19 avgusta 2017 g.), Izdatelstvo Instituta matematiki, 2017, 457 http://math.nsc.ru/conference/mmw/2017/Book_Abstract.pdf  mathnet  elib
17. T. I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, J. Appl. Industr. Math., 11:2 (2017), 204-214  crossref  mathscinet  zmath  elib  scopus 1

   2016
18. T. I. Fedoryaeva, “Structure of the diversity vector of balls of a typical graph with given diameter”, Sib. Èlektron. Mat. Izv., 13 (2016), 375–387  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
19. T. I. Fedoryaeva, “Computing the diversity vectors of balls of a given graph”, Sib. Èlektron. Mat. Izv., 13 (2016), 122–129  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
20. T.I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs with given diameter”, Proceedings of the International Conference and PhD-Master Summer School on Graphs and Groups, Spectra and Symmetries. (Novosibirsk: Sobolev Institute of Mathematics), Sobolev Institute of Mathematics & Novosibirsk State University, Novosibirsk, 2016, P.55  mathnet
21. A. A. Evdokimov, E. P. Kutcenogaya, T. I. Fedoryaeva, “On the full diversity of balls for graphs”, Prikl. Diskr. Mat. Suppl., 2016, no. 9, 110–112 http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=pdma&paperid=268&option_lang=eng  mathnet  crossref  elib  scopus

   2015
22. T. I. Fedoryaeva, “On the diversity of balls in a typical graph of a given diameter”, Prikl. Diskr. Mat. Suppl., 2015, no. 8, 127–128  mathnet  crossref  elib
23. T. I. Fedoryaeva, “The diversity vector of balls of a typical graph of small diameter”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 43–54  mathnet  crossref  mathscinet  zmath  elib

   2014
24. A. A. Evdokimov, T. I. Fedoryaeva, “On the problem of characterizing the diversity vectors of balls”, J. Appl. Industr. Math., 8:2 (2014), 190–195  mathnet  crossref  mathscinet  elib  elib  scopus
25. A. A. Evdokimov, T. I. Fedoryaeva, “On the problem of characterizing the diversity vectors of balls”, Journal of Applied and Industrial Mathematics, 8:2 (2014), 190-195  mathnet  crossref  mathscinet  zmath  elib  scopus
26. Fedoryaeva T.I. (sovmestno s Evdokimovym A.A.), “O graficheskom raznoobrazii sharov”, Problemy teoreticheskoi kibernetiki, materialy XVII mezhdunarodnoi konferentsii (Kazan, 2014), Otechestvo, Kazan, 2014, 77-80 http://elibrary.ru/item.asp?id=23739366  mathnet  elib

   2013
27. T. I. Fedoryaeva, “Majorants and minorants in the graph class with given number of vertices and diameter”, J. Appl. Industr. Math., 7:2 (2013), 153–165  mathnet  crossref  mathscinet  elib  elib
28. T. I. Fedoryaeva, “Mazhoranty i minoranty klassa n-vershinnykh grafov diametra d”, Materialy mezhdunarodnoi konferentsii “Diskret. optimizatsiya i issled. operatsii” (Novosibirsk, 24–28 iyunya 2013 g.), Izdatelstvo Instituta matematiki, Novosibirsk, 2013, 114 http://math.nsc.ru/conference/door/2013/Book  mathnet  elib  elib
29. T. I. Fedoryaeva, “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, Journal of Applied and Industrial Mathematics, 7:2 (2013), 153-165  mathnet  crossref  mathscinet  zmath  elib  scopus

   2011
30. T. I. Fedoryaeva, Kombinatornye algoritmy, Izd-vo NGU, Novosibirsk, 2011 , 118 pp.  mathnet  elib
31. T. I. Fedoryaeva, “Raznoobrazie sharov v grafakh s fiksirovannymi chislom vershin i diametrom”, Problemy teoreticheskoi kibernetiki, Izdatelstvo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2011, 491–495  mathnet  elib
32. T. I. Fedoryaeva, “On the graphs with given diameter, number of vertices, and local diversity of balls”, Journal of Applied and Industrial Mathematics, 5:1 (2011), 44–50  crossref  mathscinet  zmath  elib  scopus 1
33. T. I. Fedoryaeva, “On graphs with given diameter, number of vertices, and local diversity of balls”, J. Appl. Industr. Math., 5:1 (2011), 44–50  mathnet  crossref  mathscinet  zmath  elib  elib  scopus

   2009
34. T. I. Fedoryaeva, “Exact upper estimates of the number of different balls of given radius for the graphs with fixed number of vertexes and diameter”, Diskretn. Anal. Issled. Oper., 16:6 (2009), 74–92  mathnet  mathscinet  zmath  elib

   2008
35. T. I. Fedoryaeva, “Tochnye verkhnie otsenki komponent vektorov raznoobraziya sharov dlya grafov s zadannymi chislom vershin i diametrom”, Materialy XVII Mezhdunar. shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem” im. akademika O.B.Lupanova., Izdatelstvo Instituta matematiki, Novosibirsk, 2008, 167–172  elib
36. T. I. Fedoryaeva, “Diversity vectors of balls in graphs and estimates of the components of the vectors”, Journal of Applied and Industrial Mathematics, 2:3 (2008), 341–356  mathnet  crossref  mathscinet  zmath  elib  scopus
37. T. I. Fedoryaeva, J. Appl. Industr. Math., 2:3 (2008), 341–356  mathnet  crossref  mathscinet  zmath  elib  elib  scopus

   2007
38. T. I. Fedoryaeva, “Otsenki chisla razlichnykh sharov zadannogo radiusa v grafakh”, Matematika v sovremennom mire, Rossiiskaya konf., posvyaschennaya 50-letiyu IM SO RAN (Novosibirsk, 17–22 sentyabrya 2007 g.), Izdatelstvo Instituta matematiki, Novosibirsk, 2007, 290 http://www.mathnet.ru/php/conference.phtml?confid=34&option_lang=rus

   2006
39. T. I. Fedoryaeva, “Vektory raznoobraziya sharov i svoistva ikh komponent”, Trudy VII Mezhdunarodnoi konferentsii “Diskretnye modeli v teorii upravlyayuschikh sistem”, MGU, Moskva, 2006, 374-378  mathnet  elib

   2005
40. T. I. Fedoryaeva, “Variety of balls in metric spaces of trees”, Diskretn. Anal. Issled. Oper., 12:3 (2005), 74–84  mathnet  mathscinet  zmath  elib
41. T. I. Fedoryaeva, “O raznoobrazii metricheskikh sharov v grafakh”, Problemy teoreticheskoi kibernetiki, Tezisy dokladov XIV Mezhdunarodnoi konferentsii (Penza, 23–28 maya 2005 g.), Izd-vo mekh.-mat. fak-ta MGU, Moskva, 2005, 158 http://new.math.msu.su/department/dm/dmmc/CONF/14k_tez.pdf  mathnet

   2004
42. T. I. Fedoryaeva, “The property of metric continuation of the shortest paths in graphs”, Diskretn. Anal. Issled. Oper., 11:4 (2004), 56–67  mathnet  mathscinet  zmath  elib
43. T. I. Fedoryaeva, “Grafy, imeyuschie prodolzhenie kratchaishikh tsepei”, Materialy XV Mezhdunar. shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem” (Moskva, 18–23 oktyabrya 2004 g.), Izd-vo mekh.-mat. fak-ta MGU, Moskva, 2004, 105–109
44. T. I. Fedoryaeva, “Svoistvo metricheskogo prodolzheniya kratchaishikh tsepei”, Materialy konferentsii “Diskret. analiz i issled. operatsii” (Novosibirsk, 28 iyunya-2 iyulya 2004 g.), Izdatelstvo Instituta matematiki, Novosibirsk, 2004, 81  elib

   2001
45. T. I. Fedoryaeva, “Outerplanar graphs with the metric continuity property. II”, Diskretn. Anal. Issled. Oper., 8:1 (2001), 88–112  mathnet  mathscinet  zmath  elib

   2000
46. T. I. Fedoryaeva, “Outerplanar graphs with the metric continuation property. I”, Diskretn. Anal. Issled. Oper., 7:1 (2000), 83–112  mathnet  mathscinet  zmath  elib

   1997
47. T. I. Fedoryaeva, “Operations and Isometric Embeddings of Graphs Related to the Metric Prolongation Property”, Mathematics and Its Applications, 391, Operations Research and Discrete Analysis (1997), 31–49  crossref  mathscinet  elib

   1996
48. T. I. Fedoryaeva, Grafy, udovletvoryayuschie svoistvu prodolzheniya metriki, Avtoreferat Diss.kand. fiz.-matem. nauk, Institut matematiki SO RAN, Novosibirsk, 1996 , 12 pp.  elib
49. T. I. Fedoryaeva, “Izometricheskie vlozheniya grafov i operatsii grafov, svyazannye so svoistvom prodolzheniya metriki”, Materialy XI Mezhdunar. konf. po probl. teoret. kiber. (Ulyanovsk, 10–14 iyulya 1996 g.), Ros. gos. gumanit. un-t, Moskva, 1996, 196–197
50. T. I. Fedoryaeva, “Svoistvo prodolzheniya metriki i porog otdelimosti otobrazhenii”, Materialy XI Mezhdunar. konf. po probl. teoret. kiber. (Ulyanovsk,, 10–14 iyulya 1996 g.), Ros. gos. gumanit. un-t, Moskva, 1996, 194–195
51. T. I. Fedoryaeva, Grafy, udovletvoryayuschie svoistvu prodolzheniya metriki, Diss. kand. fiz.-matem. nauk, Izdatelstvo Instituta matematiki, Novosibirsk, 1996 , 109 pp.  elib
52. A. A. Evdokimov, C. V. Avgustinovich, A. D. Korshunov, Yu. V. Merekin, V. V. Nyu, A. L. Perezhogin, T. I. Fedoryaeva, A. E. Frid, “Metricheskie i kombinatornye voprosy diskretnogo analiza”, Nir/Niokr, 1996.  zmath  elib

   1995
53. T. I. Fedoryaeva, “Operatsii i izometricheskie vlozheniya grafov, svyazannye so svoistvom prodolzheniya metriki”, Diskretn. analiz i issled. oper., 2:3 (1995), 49–67  mathnet  mathscinet  zmath 6
54. T. I. Fedoryaeva, Vneshneplanarnye grafy, udovletvoryayuschie svoistvu prodolzheniya metriki.I, Preprint № 1, Izdatelstvo Instituta matematiki, Novosibirsk, 1995 , 50 pp.
55. T. I. Fedoryaeva, Vneshneplanarnye grafy, udovletvoryayuschie svoistvu prodolzheniya metriki.II, Preprint № 2, Izdatelstvo Instituta matematiki, Novosibirsk, 1995 , 28 pp.
56. T. I. Fedoryaeva, Vneshneplanarnye grafy, udovletvoryayuschie svoistvu prodolzheniya metriki.III, Preprint № 3, Izdatelstvo Instituta matematiki, Novosibirsk, 1995 , 50 pp.

   1993
57. T. I. Fedoryaeva, “Kharakterizatsiya klassov grafov so svoistvom prodolzheniya metriki”, Metody i sistemy tekhnicheskoi diagnostiki, Materialy X Mezhdunar. konf. po probl. teoret. kib., 18, Izdatelstvo Saratovskogo gosuniversitete, Saratov, 1993, 175

   1992
58. T. I. Fedoryaeva, “Usilennye svoistva prodolzheniya metriki”, Metody diskretnogo analiza v teorii grafov i slozhnosti, 1992, no. 52, 112–118  mathscinet  zmath

   1988
59. T. I. Fedoryaeva, “Kharakterizatsiya odnogo klassa grafov so svoistvom prodolzheniya metriki”, Metody diskretnogo analiza v issledovanii funktsionalnykh sistem, 1988, no. 47, 89-93  mathscinet  zmath

   1987
60. T. I. Fedoryaeva, D. M. Smirnov, “O reshetkakh kongruents-klassov regulyarnykh algebr”, Materialy XIX Vsesoyuzn. algebraicheskaya konf. (Lvov.), Lvov, 1987, 262

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024