Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Sergeev, Vsevolod Sergeevich
(1941–2018)

Statistics Math-Net.Ru
Total publications: 9
Scientific articles: 9

Number of views:
This page:429
Abstract pages:1418
Full texts:580
References:210
Senior Researcher
Doctor of physico-mathematical sciences (2001)
Speciality: 01.02.01 (Theoretical mechanics)
Birth date: 7.03.1941
Keywords: stability of solutions of differential and integrodifferential equations; periodic solutions; dynamics of rigid body; mathematical physics.

Subject:

The investigation of exponential stability of zero solution is given by Lyapunov's First Method for integrodifferential equations of the Volterra type with nonlinear terms depending on functional (in particular in the form of Fre'chet's series). The structure of the general solution is determined in a neighborhood of zero. The method of estimation of the region of attraction is offered; it is based on the method of majorizing equations using Lyapunov majorants. In the critical cases of one zero and pair of pure imaginary roots for the Volterra integrodifferential equations with holomorphic nonlinear terms the method of determination of the Lyapunov constants is given. The conditions on this constants for instability (stability) of zero are obtained. In the dynamics of a heavy rigid body with a fixed point the class of periodic solutions near the rapid regular Lagrange precession is found. Those solutions are represented by convergent power series depending on entire or fractional power of the small parameter (inversely proportional angular velocity of rotation of the body). Some periodic motions of a rigid body are investigated using the method of normal forms and action-angle variables. The general method of estimation of a small parameter for convergence of the series representing periodic solutions of Poincare' is given for autonomous systems of differential equations possessing by first integrals.

Biography

Graduated from the Faculty of Mathematics and Mechanics of M. V. Lomonosov Moscow State University in 1963 (department of Theoretical mechanics). Ph.D. thesis ("Some problem of a rigid body motion about a fixed point") was defended in 1969. D.Sci. thesis ("Stability in systems with aftereffect described by integrodifferential equations of the Volterra type") was defended in 2000. A list of my scientific works contains more than 60 titles.

   
Main publications:
  • Sergeev B. C. O neustoichivosti v kriticheskom sluchae pary chisto mnimykh kornei dlya odnogo klassa sistem s posledeistviem // Prikladnaya matematika i mekhanika (PMM), t. 62, vyp. 1, 1998, 79–86.
  • Sergeev B. C. Ob asimptoticheskoi ustoichivosti i otsenke oblasti prityazheniya v nekotorykh sistemakh s posledeistviem // PMM, t .60, vyp. 5, 1996, 744–751.
  • Sergeev B. C. O neustoichivosti nulevogo resheniya odnogo klassa integrodifferentsialnykh uravnenii // Differents. uravneniya, t. 24, # 8, 1988, 1443–1454.
  • Sergeev B. C. O periodicheskikh resheniyakh uravnenii dvizheniya tyazhelogo tverdogo tela vokrug nepodvizhnoi tochki // Vestn. Mosk. un-ta, matem., mekh., # 1, 1969, 40–51.

https://www.mathnet.ru/eng/person17894
List of publications on Google Scholar
https://zbmath.org/authors/ai:sergeev.v-s
https://mathscinet.ams.org/mathscinet/MRAuthorID/200491
https://elibrary.ru/author_items.asp?authorid=6533

Publications in Math-Net.Ru Citations
2013
1. V. S. Sergeev, “On the Limiting Periodic Solutions of Integral Differential Volterra Equations and their Stability”, Avtomat. i Telemekh., 2013, no. 8,  148–159  mathnet  elib; Autom. Remote Control, 74:8 (2013), 1356–1365  isi  elib  scopus
2011
2. V. S. Sergeev, “Maximum periodic solutions of the Volterra integrodifferential equations in the critical case of a pair of pure imaginary roots”, Avtomat. i Telemekh., 2011, no. 9,  87–98  mathnet  mathscinet  zmath; Autom. Remote Control, 72:9 (2011), 1876–1886  isi  scopus 5
2009
3. V. S. Sergeev, “A case of motional stability of railway wheel pair”, Avtomat. i Telemekh., 2009, no. 9,  157–161  mathnet  mathscinet  zmath; Autom. Remote Control, 70:9 (2009), 1579–1583  isi  scopus 1
2007
4. V. S. Sergeev, “On stability of viscoelastic plate equilibrium”, Avtomat. i Telemekh., 2007, no. 9,  79–86  mathnet  mathscinet  zmath; Autom. Remote Control, 68:9 (2007), 1544–1550 4
1988
5. V. S. Sergeev, “Instability of the zero solution of a class of integro-differential equations”, Differ. Uravn., 24:8 (1988),  1443–1454  mathnet  mathscinet; Differ. Equ., 24:8 (1988), 949–957 1
1986
6. V. S. Sergeev, “Stability of solutions for a class of integro-differential equations”, Differ. Uravn., 22:3 (1986),  518–523  mathnet  mathscinet
1978
7. V. S. Sergeev, “A method for obtaining estimates for regions of attraction with the aid of Ljapunov functions constructed by a numerical method”, Zh. Vychisl. Mat. Mat. Fiz., 18:5 (1978),  1154–1161  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 18:5 (1978), 80–87 1
1975
8. V. S. Sergeev, “A certain estimate of the domain of asymptotic stability for autonomous systems of equations”, Differ. Uravn., 11:10 (1975),  1832–1837  mathnet  mathscinet  zmath
1968
9. G. A. Zhorov, V. S. Sergeev, “Радиационные свойства нержавеющей стали Х18Н9Т при нагревании на воздухе”, TVT, 6:2 (1968),  340–342  mathnet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024