|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
S. A. Rashkovskiy, “Model of non-stationary combustion of solid energetic materials with accumulation of condensed products on the burning surface”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 86, 104–119 |
2. |
I. V. Eremin, K. V. Kostushin, S. A. Rashkovskiy, K. N. Zhil'tsov, “Numerical modelling of conglomerates flowing by high-temperature gas flow”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 86, 55–69 |
|
2022 |
3. |
S. A. Rashkovskiy, A. V. Fedorychev, Yu. M. Milekhin, “Comparative analysis of combustion of particles of boron, boron carbide, boron nitride and carbon in air”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 75, 122–137 |
2
|
|
2021 |
4. |
E. S. Antipova, S. A. Rashkovskiy, “Autoassociative Hamming Neural Network”, Rus. J. Nonlin. Dyn., 17:2 (2021), 175–193 |
|
2020 |
5. |
S. A. Rashkovskiy, “Hamiltonian Thermodynamics”, Rus. J. Nonlin. Dyn., 16:4 (2020), 557–580 |
|
2019 |
6. |
S. A. Rashkovskiy, A. Yu. Dolgoborodov, “Small-gas detonation in low-density mechanically activated powder mixtures”, Zhurnal Tekhnicheskoi Fiziki, 89:6 (2019), 821–829 ; Tech. Phys., 64:6 (2019), 767–775 |
|
2017 |
7. |
S. A. Rashkovskiy, Yu. M. Miloekhin, A. V. Fedorychev, “Effect of distributed injection of air into the afterburning chamber of a ram-rocket engine on the efficiency of combustion of boron particles”, Fizika Goreniya i Vzryva, 53:6 (2017), 38–52 ; Combustion, Explosion and Shock Waves, 53:6 (2017), 652–664 |
9
|
8. |
G. G. Savenkov, S. A. Rashkovskiy, V. A. Morozov, A. A. Lukin, I. A. Oskin, V. A. Bragin, A. V. Shamil’yanov, “Initiation of explosion-induced transformations in energy-saturated materials with nanoadmixtures by a high-voltage electric discharge”, Zhurnal Tekhnicheskoi Fiziki, 87:9 (2017), 1327–1335 ; Tech. Phys., 62:9 (2017), 1337–1345 |
6
|
|
2016 |
9. |
S. A. Rashkovskiy, Yu. M. Miloekhin, A. V. Fedorychev, “Correlation of parameters in the burning rate law and its influence on intraballistic characteristics of a rocket motor”, Fizika Goreniya i Vzryva, 52:4 (2016), 61–73 ; Combustion, Explosion and Shock Waves, 52:4 (2016), 427–438 |
1
|
|
2015 |
10. |
S. A. Rashkovskiy, A. Yu. Dolgoborodov, “Discrete combustion waves of two-dimensional nanocomposites”, Fizika Goreniya i Vzryva, 51:3 (2015), 60–69 ; Combustion, Explosion and Shock Waves, 51:3 (2015), 338–346 |
2
|
|
2013 |
11. |
S. A. Rashkovskiy, Yu. M. Milekhin, A. N. Kluchnikov, A. V. Fedorychev, “Bifurcations of the flow characteristics of an adjustable supersonic nozzle”, Prikl. Mekh. Tekh. Fiz., 54:5 (2013), 48–57 ; J. Appl. Mech. Tech. Phys., 54:5 (2013), 729–736 |
|
2012 |
12. |
S. A. Rashkovskiy, Yu. M. Miloekhin, A. N. Kluchnikov, A. V. Fedorychev, “Combustion mechanism of mixtures of binders capable of self-sustained combustion with inert and active fillers”, Fizika Goreniya i Vzryva, 48:2 (2012), 60–75 ; Combustion, Explosion and Shock Waves, 48:2 (2012), 177–190 |
4
|
13. |
S. A. Rashkovskiy, Yu. M. Miloekhin, A. N. Kluchnikov, A. V. Fedorychev, “Method of the model equation in the theory of unsteady combustion of a solid propellant”, Fizika Goreniya i Vzryva, 48:1 (2012), 71–79 ; Combustion, Explosion and Shock Waves, 48:1 (2012), 64–72 |
2
|
|
2011 |
14. |
S. A. Rashkovskiy, “Effect of the curvature of the burning surface of condensed energetic materials on the burning rate”, Fizika Goreniya i Vzryva, 47:6 (2011), 80–90 ; Combustion, Explosion and Shock Waves, 47:6 (2011), 687–696 |
5
|
|
2009 |
15. |
S. A. Rashkovskiy, Yu. M. Miloekhin, A. N. Kluchnikov, A. V. Fedorychev, “Effect of tension of a composite propellant on its burning rate”, Fizika Goreniya i Vzryva, 45:6 (2009), 48–56 ; Combustion, Explosion and Shock Waves, 45:6 (2009), 678–685 |
2
|
|
2007 |
16. |
S. A. Rashkovskiy, “Effect of acceleration on agglomeration of aluminum particles during combustion of composite solid propellants”, Fizika Goreniya i Vzryva, 43:6 (2007), 40–50 ; Combustion, Explosion and Shock Waves, 43:6 (2007), 654–663 |
7
|
|
2005 |
17. |
S. A. Rashkovskiy, “Statistical simulation of aluminum agglomeration during combustion of heterogeneous condensed mixtures”, Fizika Goreniya i Vzryva, 41:2 (2005), 62–74 ; Combustion, Explosion and Shock Waves, 41:2 (2005), 174–184 |
17
|
18. |
S. A. Rashkovskiy, “Hot-spot combustion of heterogeneous condensed mixtures. Thermal percolation”, Fizika Goreniya i Vzryva, 41:1 (2005), 41–54 ; Combustion, Explosion and Shock Waves, 41:1 (2005), 35–46 |
15
|
|
2003 |
19. |
S. A. Rashkovskiy, “Unsteady combustion of layered condensed systems. Parallel burning of components”, Fizika Goreniya i Vzryva, 39:2 (2003), 75–85 ; Combustion, Explosion and Shock Waves, 39:2 (2003), 185–194 |
1
|
|
2002 |
20. |
S. A. Rashkovskiy, “Role of the structure of heterogeneous condensed mixtures in the formation of agglomerates”, Fizika Goreniya i Vzryva, 38:4 (2002), 65–76 ; Combustion, Explosion and Shock Waves, 38:4 (2002), 435–445 |
20
|
|
2001 |
21. |
I. G. Assovskii, S. A. Rashkovskiy, “Low–frequency instability of solid rocket motors. Influence of the Mache effect and charge geometry”, Fizika Goreniya i Vzryva, 37:3 (2001), 83–93 ; Combustion, Explosion and Shock Waves, 37:3 (2001), 321–330 |
2
|
|
1999 |
22. |
S. A. Rashkovskiy, “Structure of heterogeneous condensed mixtures”, Fizika Goreniya i Vzryva, 35:5 (1999), 65–74 ; Combustion, Explosion and Shock Waves, 35:5 (1999), 523–531 |
18
|
|
1998 |
23. |
I. G. Assovskii, S. A. Rashkovskiy, “The influence of the Mache effect on combustion stability in a solid rocket motor”, Fizika Goreniya i Vzryva, 34:5 (1998), 52–58 ; Combustion, Explosion and Shock Waves, 34:5 (1998), 528–533 |
1
|
|
1992 |
24. |
S. A. Rashkovskiy, “Theory of nonsteady combustion of metal-free condensed mixtures”, Fizika Goreniya i Vzryva, 28:6 (1992), 24–32 ; Combustion, Explosion and Shock Waves, 28:6 (1992), 593–600 |
2
|
25. |
S. A. Rashkovskiy, “Statistical model for combustion of a condensed heterogeneous mixture”, Fizika Goreniya i Vzryva, 28:6 (1992), 17–24 ; Combustion, Explosion and Shock Waves, 28:6 (1992), 586–592 |
|
Organisations |
|
|
|
|