Loading [MathJax]/jax/output/SVG/config.js
Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 2017, Volume 53, Issue 6, Pages 38–52
DOI: https://doi.org/10.15372/FGV20170605
(Mi fgv454)
 

This article is cited in 10 scientific papers (total in 10 papers)

Effect of distributed injection of air into the afterburning chamber of a ram-rocket engine on the efficiency of combustion of boron particles

S. A. Rashkovskiya, Yu. M. Miloekhinb, A. V. Fedorychevb

a Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, 119526, Russia
b Federal Center for Dual-Use Technologies "Soyuz", Dzerzhinskii, 140090, Russia
Abstract: A mathematical model of combustion of boron particles in a ram-rocket engine is developed. The boron combustion efficiency for one-stage and two-stage injection of air into the afterburning chamber is calculated. It is demonstrated that two-stage injection of air sometimes allows the time of complete combustion of boron particles to be significantly reduced (by a factor of 1.5–3); thus, the fuel combustion efficiency in the ram-rocket engine can be increased. The simulated results are consistent with available experimental data.
Keywords: ram-rocket engine, boron particles, combustion, combustion efficiency, distributed injection of air.
Received: 25.12.2016
Revised: 14.02.2017
English version:
Combustion, Explosion and Shock Waves, 2017, Volume 53, Issue 6, Pages 652–664
DOI: https://doi.org/10.1134/S0010508217060053
Bibliographic databases:
Document Type: Article
UDC: 536.46
Language: Russian
Citation: S. A. Rashkovskiy, Yu. M. Miloekhin, A. V. Fedorychev, “Effect of distributed injection of air into the afterburning chamber of a ram-rocket engine on the efficiency of combustion of boron particles”, Fizika Goreniya i Vzryva, 53:6 (2017), 38–52; Combustion, Explosion and Shock Waves, 53:6 (2017), 652–664
Citation in format AMSBIB
\Bibitem{RasMilFed17}
\by S.~A.~Rashkovskiy, Yu.~M.~Miloekhin, A.~V.~Fedorychev
\paper Effect of distributed injection of air into the afterburning chamber of a ram-rocket engine on the efficiency of combustion of boron particles
\jour Fizika Goreniya i Vzryva
\yr 2017
\vol 53
\issue 6
\pages 38--52
\mathnet{http://mi.mathnet.ru/fgv454}
\crossref{https://doi.org/10.15372/FGV20170605}
\elib{https://elibrary.ru/item.asp?id=30685609}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2017
\vol 53
\issue 6
\pages 652--664
\crossref{https://doi.org/10.1134/S0010508217060053}
Linking options:
  • https://www.mathnet.ru/eng/fgv454
  • https://www.mathnet.ru/eng/fgv/v53/i6/p38
  • This publication is cited in the following 10 articles:
    1. Sergey Rashkovskiy, “COMBUSTION OF CONDENSED COMBUSTION PRODUCTS OF BORON-CONTAINING SOLID PROPELLANTS IN AIR”, Int J Energetic Materials Chem Prop, 23:2 (2024), 25  crossref
    2. A. L. Vereshchagin, “Prospective Components of Rocket Propellant. II. Hydrides, Nitriles, Tetrazoles”, rev. and adv. in chem., 14:2 (2024), 104  crossref
    3. A. P. Shpara, D. A. Yagodnikov, A. V. Sukhov, “Effect of heat losses on boron particle combustion in a high-temperature air flow”, Combustion, Explosion and Shock Waves, 60:2 (2024), 178–184  mathnet  crossref  crossref  elib
    4. A. A. Syrovaten, I. A. Bedarev, D. A. Tropin, “Numerical simulation of ignition and combustion boron gas suspension behind shock waves”, Combustion, Explosion and Shock Waves, 60:3 (2024), 306–317  mathnet  crossref  crossref  elib
    5. A. L. Vereshchagin, E. D. Minin, N. V. Bychin, A. V. Sergienko, E. A. Morozova, “Effect of Dispersion of Calcium Hypophosphite on the Macrokinetics of Its Oxidation”, Dokl Chem, 515:1-2 (2024), 70  crossref
    6. O.G. Glotov, “Screening of metal fuels for use in composite propellants for ramjets”, Progress in Aerospace Sciences, 143 (2023), 100954  crossref
    7. S A Basalaev, V T Kuznetsov, S A Rashkovskiy, “Pyrolysis of boron-containing compositions upon exposure to radiant energy”, J. Phys.: Conf. Ser., 2233:1 (2022), 012011  crossref
    8. A. V. Fedorychev, Yu. M. Milekhin, S. A. Rashkovskii, “Condensed Products of Combustion of Boron-Based Solid Propellants”, Dokl Phys Chem, 500:1 (2021), 79  crossref
    9. A N Shiplyuk, S V Lukashevich, V I Simagina, O V Netskina, O V Komova, “Analysis of the effect of boron-containing compounds and combustion catalysts on paraffin combustion rate in an oxidizer flow”, J. Phys.: Conf. Ser., 1556:1 (2020), 012038  crossref
    10. V. Yu. Gidaspov, N. S. Severina, “Modeling of detonation of metal-gas combustible mixtures in high-speed flow behind a shock wave”, High Temperature, 57:4 (2019), 514–524  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:54
    Full-text PDF :21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025