Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Snegur, Maksim Olegovich

Statistics Math-Net.Ru
Total publications: 14
Scientific articles: 14

Number of views:
This page:122
Abstract pages:846
Full texts:268
References:299
E-mail:

https://www.mathnet.ru/eng/person146818
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2021
1. M. O. Snegur, “Numerical study of the spectrum of complex waves of a plane waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 4,  46–56  mathnet
2. E. Yu. Smol'kin, M. O. Snegur, “The method of operator beams and operator functions in the problem of normal waves of a closed regular inhomogeneous dielectric waveguide of arbitrary cross section”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 2,  77–89  mathnet
3. E. D. Derevyanchyk, A. O. Lapich, M. O. Snegur, “A numerical method for solving the problem of TE-polarized waves' propagation in a multilayer inhomogeneous circular waveguide filled with a metamaterial”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 1,  102–111  mathnet
4. E. Yu. Smol'kin, M. O. Snegur, “Numerical investigation of the TE-polarized complex electromagnetic waves in an open nonhomogeneous layer”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 1,  10–19  mathnet
5. Yu. G. Smirnov, E. Yu. Smol'kin, M. O. Snegur, “Numerical study of propagation of nonlinear coupled surface and leaky electromagnetic waves in a circular cylindrical metal–dielectric waveguide”, Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021),  1378–1389  mathnet  elib; Comput. Math. Math. Phys., 61:8 (2021), 1353–1363  isi  scopus 3
2020
6. A. O. Lapich, E. Yu. Smol'kin, A. S. Shutkov, M. O. Snegur, “A numerical method for solving the problem of propagation of outleting TE-polarized waves in a multilayer circular waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2020, no. 3,  114–126  mathnet
2019
7. M. O. Snegur, V. Yu. Martynova, “Hybrid waves of a shielded waveguide with nonlinear inhomogeneous filling”, University proceedings. Volga region. Physical and mathematical sciences, 2019, no. 4,  95–104  mathnet 1
8. E. Yu. Smol'kin, M. O. Snegur, A. O. Lapich, L. Yu. Gamayunova, “The study of nonlinear eigenvalue problems for the Maxwell equation system describing the propagation of electromagnetic waves in regular nonuniform shielded (closed) waveguide structures of circular cross section”, University proceedings. Volga region. Physical and mathematical sciences, 2019, no. 3,  36–46  mathnet
2018
9. E. Yu. Smol'kin, M. O. Snegur, “The method of operator functions in the problem of normal waves of an anisotropic screened waveguide of arbitrary section”, University proceedings. Volga region. Physical and mathematical sciences, 2018, no. 3,  52–63  mathnet
10. E. Yu. Smol'kin, M. O. Snegur, “A numerical research of a proper wave spectrum of an anisotropic dielectric waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2018, no. 1,  72–82  mathnet
11. Yu. G. Smirnov, E. Yu. Smolkin, M. O. Snegur, “Analysis of the spectrum of azimuthally symmetric waves of an open inhomogeneous anisotropic waveguide with longitudinal magnetization”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018),  1955–1970  mathnet  elib; Comput. Math. Math. Phys., 58:11 (2018), 1887–1901  isi  scopus 16
2017
12. E. Yu. Smol'kin, M. O. Snegur, E. A. Khorosheva, “A numerical research of the range of normal modes of an open inhomogeneous waveguide with circular cross-section”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 4,  76–86  mathnet 1
13. Yu. G. Smirnov, E. Yu. Smol'kin, M. O. Snegur, “On spectrum's discrete nature in the problem of azimuthal symmetrical waves of an open nonhomogeneous anisotropic waveguide with longitudinal magnetization”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 3,  50–64  mathnet 2
14. E. Yu. Smol'kin, M. O. Snegur, “A numerical method to solve the electromagnetic wave propagation problem in a cylindrical anisotropic inhomogeneous waveguide with longitudinal magnetization”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 2,  32–43  mathnet 2

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024