Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Solonukha, Olesya Vladimirovna

Associate professor
Candidate of physico-mathematical sciences (1998)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
Website: https://www.cemi.rssi.ru/about/persons/index.php?SECTION_ID=6&ELEMENT_ID=9335
Keywords: nonlinear elliptic and parabolic functional-differential equations, pseudomonotone operators, variational inequalities

Subject:

functional-differential equations, nonlocal problems, variational inequalities, multivalued analysis

   
Main publications:
  1. Solonukha O.V., “OB ODNOM ELLIPTIChESKOM DIFFERENTsIALNO-RAZNOSTNOM URAVNENII S NESIMMETRIChNYM OPERATOROM SDVIGOV”, Matematicheskie zametki, 104:4 (2018), 604-620
  2. Solonukha O.V., “OB ODNOI NELINEINOI NELOKALNOI ZADAChE ELLIPTIChESKOGO TIPA”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki., 57:3 (2017), 417-428
  3. Solonukha O.V., “ON NONLINEAR AND QUASILINIEAR ELLIPTIC FUNCTIONAL DIFFERENTIAL EQUATIONS”, Discrete and Continuous Dynamical Systems - Series S, 9:3 (2016), 869-893
  4. Solonukha O.V., “OB ODNOM KLASSE SUSchESTVENNO NELINEINYKh ELLIPTIChESKIKh DIFFERENTsIALNO-RAZNOSTNYKh URAVNENII”, Trudy Matematicheskogo instituta imeni V.A. Steklova, 283 (2013), 233-251
  5. Solonoukha O.V., “ON THE STATIONARY VARIATIONAL INEQUALITIES WITH GENERALIZED PSEUDOMONOTONE OPERATORS”, Methods of Functional Analysis and Topology, 3:3 (1997), 81-95

https://www.mathnet.ru/eng/person14464
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/617199
https://elibrary.ru/author_items.asp?spin=7868-4686
ISTINA https://istina.msu.ru/workers/121051910
https://orcid.org/0000-0002-2042-8886
https://www.scopus.com/authid/detail.url?authorId=7801581618
https://www.researchgate.net/profile/Olesa-Solonuha

Publications in Math-Net.Ru Citations
2024
1. O. V. Solonukha, “On the solvability of an essentially nonlinear elliptic differential equation with nonlocal boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 64:2 (2024),  304–321  mathnet  elib; Comput. Math. Math. Phys., 64:2 (2024), 285–299
2023
2. O. V. Solonukha, “On the existence of time-periodic solutions of nonlinear parabolic differential equations with nonlocal boundary conditions of the Bitsadze–Samarskii type”, CMFD, 69:4 (2023),  712–725  mathnet
3. O. V. Solonukha, “Nonlinear differential-difference equations of elliptic and parabolic type and their applications to nonlocal problems”, CMFD, 69:3 (2023),  445–563  mathnet 1
4. O. V. Solonukha, “On the Solvability of Nonlinear Parabolic Functional-Differential Equations with Shifts in the Spatial Variables”, Mat. Zametki, 113:5 (2023),  747–763  mathnet  mathscinet; Math. Notes, 113:5 (2023), 708–722  scopus 5
5. O. V. Solonukha, “On solvability of parabolic equations with essentially nonlinear differential-difference operators”, Sibirsk. Mat. Zh., 64:5 (2023),  1094–1113  mathnet 1
2022
6. O. V. Solonukha, “On periodic solutions of quasilinear parabolic equations with boundary conditions of Bitsadze–Samarskii type”, Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022),  83–86  mathnet  mathscinet  elib; Dokl. Math., 105:2 (2022), 123–126
2021
7. O. V. Solonukha, “On solvability of a linear parabolic problem with nonlocal boundary conditions”, CMFD, 67:2 (2021),  349–362  mathnet 4
8. O. V. Solonukha, “On periodic solutions of linear parabolic problems with nonlocal boundary conditions”, Taurida Journal of Computer Science Theory and Mathematics, 2021, no. 2,  7–11  mathnet
2020
9. O. V. Solonukha, “Generalized solutions of quasilinear elliptic differential-difference equations”, Zh. Vychisl. Mat. Mat. Fiz., 60:12 (2020),  2085–2097  mathnet  elib; Comput. Math. Math. Phys., 60:12 (2020), 2019–2031  isi  scopus 5
2018
10. O. V. Solonukha, “On an Elliptic Differential-Difference Equation with Nonsymmetric Shift Operator”, Mat. Zametki, 104:4 (2018),  604–620  mathnet  mathscinet  elib; Math. Notes, 104:4 (2018), 572–586  isi  scopus 5
2017
11. O. V. Solonukha, “On a nonlinear nonlocal problem of elliptic type”, Zh. Vychisl. Mat. Mat. Fiz., 57:3 (2017),  417–428  mathnet  elib; Comput. Math. Math. Phys., 57:3 (2017), 422–433  isi  scopus 11
2013
12. O. V. Solonukha, “On a class of essentially nonlinear elliptic differential–difference equations”, Trudy Mat. Inst. Steklova, 283 (2013),  233–251  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 283 (2013), 226–244  isi  elib 15
2005
13. O. V. Solonukha, “Existence of solutions of parabolic variational inequalities with one-sided restrictions”, Mat. Zametki, 77:3 (2005),  460–476  mathnet  mathscinet  zmath; Math. Notes, 77:3 (2005), 424–439  isi  scopus 6
2004
14. O. V. Solonukha, “On a non-linear parabolic problem with an obstacle”, Uspekhi Mat. Nauk, 59:3(357) (2004),  181–182  mathnet  mathscinet  zmath; Russian Math. Surveys, 59:3 (2004), 591–592  isi  scopus 2

Presentations in Math-Net.Ru
1. On existence of solutions to elliptic differential difference equations with essentially nonlinear operators having a semibounded variation
O. V. Solonukha
VI International Conference "Function Spaces. Differential Operators. Problems of Mathematical Education", dedicated to the centennial anniversary of the corresponding member of Russian Academy of Sciences, academician of European Academy of Sciences L.D. Kudryavtsev
November 17, 2023 18:20   
2. Existence of solutions of essentially nonlinear differential-difference equations of elliptic type
O. V. Solonukha
Scientific seminar on the differential and functional differential equations
February 28, 2023 12:00   
3. The monotonicity method in the study of nonlinear differential equations: the existence of solutions of elliptic nonlinear equations with monotone operators.
O. V. Solonukha

November 21, 2022 18:00
4. Existence of a solution to a nonlinear parabolic differential-difference equation
O. V. Solonukha
Scientific seminar on the differential and functional differential equations
May 3, 2022 12:00   
5. On nonlinear parabolic equations with boundary conditions of the Bitsadze-Samarskii type
O. V. Solonukha
Seminar on nonlinear problems of partial differential equations and mathematical physics
November 16, 2021 18:00   
6. On periodic solutions of parabolic problems with nonlocal boundary conditions
O. V. Solonukha
Mathematical Physics, Dynamical Systems and Infinite-Dimensional Analysis – 2021
July 1, 2021 15:35   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024