Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 12, Pages 2085–2097
DOI: https://doi.org/10.31857/S0044466920120145
(Mi zvmmf11173)
 

This article is cited in 5 scientific papers (total in 5 papers)

Partial Differential Equations

Generalized solutions of quasilinear elliptic differential-difference equations

O. V. Solonukhaab

a Federal Research Center "Informatics and Management", Russian Academy of Sciences, Moscow, 119333 Russia
b Peoples' Friendship University of Russia, Moscow, 117198 Russia
Citations (5)
References:
Abstract: A Dirichlet problem for a functional-differential equation the operator of which is represented by the product of a quasilinear differential operator and a linear shift operator is considered. The nonlinear operator has differentiable coefficients. A sufficient condition for the strong ellipticity of the differential-difference operator is proposed. For a Dirichlet problem with an operator satisfying the strong ellipticity condition, the existence and uniqueness of a generalized solution is proved. The situation is considered in which the differential-difference operator belongs to the class of pseudomonotone ${(S)}_+$ operators; in this case, a generalized solution of the Dirichlet problem exists. As an example, a nonlocal problem with a Bitsadze–Samarskii boundary condition is considered.
Key words: quasilinear elliptic differential-difference equation, pseudomonotone operator, strong ellipticity, $(S)_+$-property.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 075-03-2020-223/3 (FSSF-2020-0018)
This work was supported by the Ministry of Education and Science of the Russian Federation within the state assignment no. 075-03-2020-223/3 (FSSF-2020-0018).
Received: 06.07.2020
Revised: 06.07.2020
Accepted: 04.08.2020
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 12, Pages 2019–2031
DOI: https://doi.org/10.1134/S0965542520120143
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: O. V. Solonukha, “Generalized solutions of quasilinear elliptic differential-difference equations”, Zh. Vychisl. Mat. Mat. Fiz., 60:12 (2020), 2085–2097; Comput. Math. Math. Phys., 60:12 (2020), 2019–2031
Citation in format AMSBIB
\Bibitem{Sol20}
\by O.~V.~Solonukha
\paper Generalized solutions of quasilinear elliptic differential-difference equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 12
\pages 2085--2097
\mathnet{http://mi.mathnet.ru/zvmmf11173}
\crossref{https://doi.org/10.31857/S0044466920120145}
\elib{https://elibrary.ru/item.asp?id=44154327}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 12
\pages 2019--2031
\crossref{https://doi.org/10.1134/S0965542520120143}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000604980400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85098635633}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11173
  • https://www.mathnet.ru/eng/zvmmf/v60/i12/p2085
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024