Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Alkousa, Mohammad Soud

Statistics Math-Net.Ru
Total publications: 14
Scientific articles: 14
Presentations: 3

Number of views:
This page:384
Abstract pages:3009
Full texts:772
References:485
E-mail:

https://www.mathnet.ru/eng/person139645
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2024
1. S. M. Puchinin, E. R. Korolkov, F. S. Stonyakin, M. S. Alkousa, A. A. Vyguzov, “Subgradient methods with B.T. Polyak-type step for quasiconvex minimization problems with inequality constraints and analogs of the sharp minimum”, Computer Research and Modeling, 16:1 (2024),  105–122  mathnet
2023
2. F. S. Stonyakin, O. S. Savchuk, I. V. Baran, M. S. Alkousa, A. A. Titov, “Analogues of the relative strong convexity condition for relatively smooth problems and adaptive gradient-type methods”, Computer Research and Modeling, 15:2 (2023),  413–432  mathnet
3. F. S. Stonyakin, S. S. Ablaev, I. V. Baran, M. S. Alkousa, “Subgradient methods for weakly convex and relatively weakly convex problems with a sharp minimum”, Computer Research and Modeling, 15:2 (2023),  393–412  mathnet 1
4. M. S. Alkousa, A. V. Gasnikov, E. L. Gladin, I. A. Kuruzov, D. A. Pasechnyuk, F. S. Stonyakin, “Solving strongly convex-concave composite saddle-point problems with low dimension of one group of variable”, Mat. Sb., 214:3 (2023),  3–53  mathnet  mathscinet; Sb. Math., 214:3 (2023), 285–333  isi  scopus
5. S. S. Ablaev, F. S. Stonyakin, M. S. Alkousa, A. V. Gasnikov, “Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:3 (2023),  7–25  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S1–S18  scopus 1
2022
6. S. S. Ablaev, D. V. Makarenko, F. S. Stonyakin, M. S. Alkousa, I. V. Baran, “Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum”, Computer Research and Modeling, 14:2 (2022),  473–495  mathnet 1
7. O. S. Savchuk, A. A. Titov, F. S. Stonyakin, M. S. Alkousa, “Adaptive first-order methods for relatively strongly convex optimization problems”, Computer Research and Modeling, 14:2 (2022),  445–472  mathnet
8. M. S. Alkousa, A. V. Gasnikov, P. E. Dvurechenskii, A. A. Sadiev, L. Ya. Razouk, “An approach for the nonconvex uniformly concave structured saddle point problem”, Computer Research and Modeling, 14:2 (2022),  225–237  mathnet 1
9. F. S. Stonyakin, A. A. Titov, D. V. Makarenko, M. S. Alkousa, “Numerical Methods for Some Classes of Variational Inequalities with Relatively Strongly Monotone Operators”, Mat. Zametki, 112:6 (2022),  879–894  mathnet  mathscinet; Math. Notes, 112:6 (2022), 965–977  scopus 1
2021
10. E. L. Gladin, M. Alkousa, A. V. Gasnikov, “Solving convex min-min problems with smoothness and strong convexity in one group of variables and low dimension in the other”, Avtomat. i Telemekh., 2021, no. 10,  60–75  mathnet; Autom. Remote Control, 82:10 (2021), 1679–1691  isi  scopus
2020
11. M. S. Alkousa, A. V. Gasnikov, D. M. Dvinskikh, D. A. Kovalev, F. S. Stonyakin, “Accelerated methods for saddle-point problem”, Zh. Vychisl. Mat. Mat. Fiz., 60:11 (2020),  1843–1866  mathnet  elib; Comput. Math. Math. Phys., 60:11 (2020), 1787–1809  isi  scopus 13
2019
12. M. S. Alkousa, “On some stochastic mirror descent methods for constrained online optimization problems”, Computer Research and Modeling, 11:2 (2019),  205–217  mathnet 3
13. F. S. Stonyakin, M.  Alkousa, A. N. Stepanov, A. A. Titov, “Adaptive mirror descent algorithms for convex and strongly convex optimization problems with functional constraints”, Diskretn. Anal. Issled. Oper., 26:3 (2019),  88–114  mathnet; J. Appl. Industr. Math., 13:3 (2019), 557–574  scopus 3
2018
14. F. S. Stonyakin, M. S. Alkousa, A. N. Stepanov, M. A. Barinov, “Adaptive mirror descent algorithms in convex programming problems with Lipschitz constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  266–279  mathnet  elib 7

Presentations in Math-Net.Ru
1. Gradient-Type Method for Optimization Problems with Polyak-Lojasiewicz Condition: Relative Inexactness in Gradient and Adaptive Parameters Setting
S. M. Puchinin, F. S. Stonyakin, M. S. Alkousa
The ninth international conference "Quasilinear Equations, Inverse Problems and their Applications" (QIPA 2023)
December 4, 2023 18:05   
2. Online optimization problems with functional constraints under relative Lipschitz continuity and relative strong convexity conditions
O. S. Savchuk, A. A. Titov, A. V. Gasnikov, F. S. Stonyakin, M. S. Alkousa, R. Zabirova
The ninth international conference "Quasilinear Equations, Inverse Problems and their Applications" (QIPA 2023)
December 4, 2023 17:40   
3. Adaptive subgradient methods for mathematical programming problems with quasi-convex functions
S. S. Ablaev, F. S. Stonyakin, M. S. Alkousa, A. V. Gasnikov
The ninth international conference "Quasilinear Equations, Inverse Problems and their Applications" (QIPA 2023)
December 4, 2023 15:00   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024