Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 3, Pages 7–25
DOI: https://doi.org/10.21538/0134-4889-2023-29-3-7-25
(Mi timm2015)
 

This article is cited in 2 scientific papers (total in 2 papers)

Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions

S. S. Ablaevab, F. S. Stonyakinba, M. S. Alkousab, A. V. Gasnikovbcd

a V. I. Vernadsky Crimean Federal University, Simferopol
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
d Caucasus Mathematical Center, Adyghe State University, Maikop
Full-text PDF (293 kB) Citations (2)
References:
Abstract: The paper is devoted to subgradient methods with switching between productive and nonproductive steps for problems of minimization of quasiconvex functions under functional inequality constraints. For the problem of minimizing a convex function with quasiconvex inequality constraints, a result is obtained on the convergence of the subgradient method with an adaptive stopping rule. Further, based on an analog of a sharp minimum for nonlinear problems with inequality constraints, results are obtained on the geometric convergence of restarted versions of subgradient methods. Such results are considered separately in the case of a convex objective function and quasiconvex inequality constraints, as well as in the case of a quasiconvex objective function and convex inequality constraints. The convexity may allow to additionally suggest adaptive stopping rules for auxiliary methods, which guarantee that an acceptable solution quality is achieved. The results of computational experiments are presented, showing the advantages of using such stopping rules.
Keywords: subgradient method, quasiconvex function, sharp minimum, restarts, adaptive method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1316
0714-2020-0005
The research of F.S. Stonyakin in Sections 2 and 5 was supported by the Strategic Academic Leadership Program "Priority 2030'"(agreement no. 075-02-2021-1316 of September 30, 2021). The research of A.V. Gasnikov in Section 4 was carried out under a state task of the Ministry of Science and Higher Education of the Russian Federation (project no. 0714-2020-0005).
Received: 14.05.2023
Revised: 04.07.2023
Accepted: 10.07.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 323, Issue 1, Pages S1–S18
DOI: https://doi.org/10.1134/S0081543823060019
Bibliographic databases:
Document Type: Article
UDC: 519.85
MSC: 90C25, 90С06, 49J52
Language: Russian
Citation: S. S. Ablaev, F. S. Stonyakin, M. S. Alkousa, A. V. Gasnikov, “Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 3, 2023, 7–25; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S1–S18
Citation in format AMSBIB
\Bibitem{AblStoAlk23}
\by S.~S.~Ablaev, F.~S.~Stonyakin, M.~S.~Alkousa, A.~V.~Gasnikov
\paper Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 3
\pages 7--25
\mathnet{http://mi.mathnet.ru/timm2015}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-3-7-25}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4649589}
\elib{https://elibrary.ru/item.asp?id=54393164}
\edn{https://elibrary.ru/ybvwdv}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 323
\issue , suppl. 1
\pages S1--S18
\crossref{https://doi.org/10.1134/S0081543823060019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185114019}
Linking options:
  • https://www.mathnet.ru/eng/timm2015
  • https://www.mathnet.ru/eng/timm/v29/i3/p7
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024