A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russian Math. Surveys, 71:4 (2016), 751–779
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329
A. E. Mironov, “Self–adjoint commuting ordinary differential operators”, Inventiones mathematicae, 197:2 (2014), 417–431
M. Bialy, A. E. Mironov, “Cubic and quartic integrals for geodesic flow on 2–torus via system of hydrodynamic type”, Nonlinearity, 24 (2011), 3541–3554
A. E. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Sb. Math., 195:1 (2004), 85–96
V. Dragovic, A. E. Mironov, “On Differential Equations of Integrable Billiard Tables”, Acta Mathematica Sinica, 40:1 (2024), 417-424
2.
G. S. Mauleshova, A. E. Mironov, “Difference Analog of the Lamé Operator”, Proc. Steklov Inst. Math., 325 (2024), 177–187
3.
S. V. Agapov, A. E. Mironov, “Finite-gap potentials and integrable geodesic equations on a 2-surface”, Mathematical Aspects of Mechanics, Collected papers. Dedicated to Dmitry Valerevich Treschev on the occasion of his 60th birthday and to Sergey Vladimirovich Bolotin on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 327, Steklov Math. Inst., Moscow, 2024
4.
P. A. Leonchik, A. E. Mironov, “Two-dimensional discrete operators and rational functions on algebraic curves”, Sao Paulo Journal of Mathematical Sciences, 2024 (Published online)
2023
5.
A. E. Mironov, A. Senninger, I. A. Taimanov, “Orthogonal Curvilinear Coordinate Systems and Torsion-Free Sheaves over Reducible Spectral Curves”, Math. Notes, 114:4 (2023), 573–582
6.
G. S. Mauleshova, A. E. Mironov, “One-dimensional finite-gap Schrödinger operators as a limit of commuting difference operators”, Dokl. Math., 108:1 (2023), 312–315
2022
7.
M. Bialy, A. E. Mironov, “The Birkhoff-Poritsky conjecture for centrally-symmetric billiard tables”, Annals of Mathematics, 196:1 (2022), 389-413
Misha Bialy, Andrey E. Mironov, Lior Shalom, “Outer Billiards with the Dynamics of a Standard Shift on a Finite Number of Invariant Curves”, Experimental Mathematics, 30:4 (2021), 469-474
Gulnara S. Mauleshova, Andrey E. Mironov, “Discretization of Commuting Ordinary Differential Operators of Rank 2 in the Case of Elliptic Spectral Curves”, Proc. Steklov Inst. Math., 310 (2020), 202–213
10.
Misha Bialy, Andrey E. Mironov, Serge Tabachnikov, “Wire billiards, the first steps”, Advances in Mathematics, 368 (2020), 107154 , 30 pp.
Misha Bialy, Andrey E. Mironov, Lior Shalom, “Magnetic billiards: Non-integrability for strong magnetic field; Gutkin type examples”, Journal of Geometry and Physics, 154 (2020), 103716 , 19 pp.
Gulnara S. Mauleshova, Andrey E. Mironov, “Positive one–point commuting difference operators”, Integrable Systems and Algebraic Geometry, Part of London Mathematical Society Lecture Note Series, 1, Cambridge University Press, 2020, 395–412
13.
Alina Dobrogowska and Andrey E. Mironov, “Periodic One-Point Rank One Commuting Difference Operators”, Geometric Methods in Physics XXXVIII, Trends in Mathematics, Springer Nature, 2020
2019
14.
M. Bialy, A. E. Mironov, “Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane”, Russian Math. Surveys, 74:2 (2019), 187–209
15.
G. S. Mauleshova, A. E. Mironov, “Difference Krichever–Novikov Operators of Rank 2”, Proc. Steklov Inst. Math., 305 (2019), 195–208
16.
G. Abdikalikova, A. E. Mironov, “On exact solutions of a system of quasi-linear equations describing integrable geodesic flows on a surface”, Sib. Èlektron. Mat. Izv., 16 (2019), 949–954
17.
G. S. Mauleshova, A. E. Mironov, “On Rank Two Algebro–Geometric Solutions of an Integrable Chain”, Geometric Methods in Physics XXXVI, Trends in Mathematics, Birkhäuser, Cham, 2019, 189–195
G. S. Mauleshova, A. E. Mironov, “One–point commuting difference operators of rank 1 and their relation with finite–gap Schrodinger operators”, Doklady Math., 97:1 (2018), 62–64
M. Bialy, A. E. Mironov, “A survey on polynomial in momenta integrals for billiard ploblems”, Philosophical Transactions of the royal society A. Math., phys. and engineering sciences, 376:2131 (2018), 20170418
M. Bialy, A. E. Mironov, “Algebraic Birkhoff conjecture for billiards on Sphere and Hyperbolic plane”, Journal of Geometry and Physics, 115 (2017), 150–156
A. E. Mironov, D. Zuo, “Spectral curve of the Halphen operator”, Proceedings of the Edinburgh Mathematical Society, 60:2 (2017), 451–460
23.
S. V. Agapov, M. Bialy, A. E. Mironov, “Integrable magnetic geodesic flows on 2-torus: new examples via quasi–linear system of PDEs”, Communications in mathematical physics, 351:3 (2017), 993–1007
V. N. Davletshina, A. E. Mironov, “On commuting ordinary differential operators with polynomial coefficients corresponding to spectral curves of genus two”, Bull. Korean Math. Soc., 54:5 (2017), 1669–1675
26.
M. Bialy, A. E. Mironov, “In search of periodic solutions for a reduction of the Benney chain”, Journal of Math. Physics, 58 (2017), 11
2016
27.
A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russian Math. Surveys, 71:4 (2016), 751–779
28.
M. Bialy, A. E. Mironov, “On fourth-degree polynomial integrals of the Birkhoff billiard”, Proc. Steklov Inst. Math., 295 (2016), 27–32
29.
A. B. Zheglov, A. E. Mironov, B. T. Saparbayeva, “Commuting Krichever–Novikov differential operators with polynomial coefficients”, Siberian Math. J., 57:5 (2016), 819–823
30.
G. S. Mauleshova, A. E. Mironov, “One–point commuting difference operators of rank 1”, Doklady Math., 93:1 (2016), 62–64
A. B. Zheglov, A. E. Mironov,, “Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra”, International Mathematics Research Notices, 2016:10 (2016), 2974–2993
G. S. Mauleshova, A. E. Mironov, “Commuting difference operators of rank two”, Russian Math. Surveys, 70:3 (2015), 557–559
34.
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329
35.
M. Bialy, A. E. Mironov, “Integrable geodesic flows on 2–torus: Formal solutions and variational principle”, Journal of Geometry and Physics, 87:1 (2015), 39–47
A. E. Mironov, B. T. Saparbayeva, “On the eigenfunctions of the one–dimensional Schrodinger operator with a polynomial potential”, Doklady Math., 91:2 (2015), 171–172
A. B. Zheglov, A. E. Mironov,, “On commuting differential operators with polynomial coefficients corresponding to spectral curves of genus one”, Doklady Math., 91:3 (2015), 281–282
A. E. Mironov, “Periodic and rapid decay rank two self–adjoint commuting differential operators”, Amer. Math. Soc. Transl. Ser. 2, 234 (2014), 309–322
2013
40.
A. E. Mironov, T. E. Panov, “Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings”, Funct. Anal. Appl., 47:1 (2013), 38–49
41.
A. E. Mironov, A. Nakayashiki, “Discretization of Baker–Akhiezer modules and commuting difference operators in several discrete variables”, Trans. Moscow Math. Soc., 74 (2013), 261–279
42.
A. E. Mironov, T. E. Panov, “Hamiltonian-minimal Lagrangian submanifolds in toric varieties”, Russian Math. Surveys, 68:2 (2013), 392–394
43.
M. Bialy, A. E. Mironov, “From polynomial integrals of Hamiltonian flows to a model of non–linear elasticity”, Journal of Differential Equations, 255:10 (2013), 3434–3446
A. E. Mironov, “Commuting higher rank ordinary differential operators”, Proceedings of 6th European Congress of Mathematics, 2013, 459–473
2012
45.
A. B. Zheglov, A. E. Mironov, “Baker – Akhiezer modules, Krichever sheaves, and commuting rings of partial differential operators”, Dalnevost. Mat. Zh., 12:1 (2012), 20–34
46.
M. Bialy, A. E. Mironov, “New semi–Hamiltonian hierarchy related to integrable magnetic flows on surfaces”, Cent. Eur. J. Math., 10:5 (2012), 1596–1604
K. Cho, A. E. Mironov, A. Nakayashiki, “Baker–Akhiezer Modules on the Intersections of Shifted Theta Divisors”, Publications of the Research Institute for Mathematical Sciences, 47:2 (2011), 353–567
M. Bialy, A. E. Mironov, “Rich quasi–linear system for integrable geodesic flows on 2–torus”, Discrete and Continuous Dynamical Systems — Series A, 29:1 (2011), 81–90
M. Bialy, A. E. Mironov, “Cubic and quartic integrals for geodesic flow on 2–torus via system of hydrodynamic type”, Nonlinearity, 24 (2011), 3541–3554
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Two–dimensional Pauli operator in magnetic field”, Low Temperature Physics, 37:9–10 (2011), 829–833
2010
51.
A. E. Mironov, “On polynomial integrals of a mechanical system on a two-dimensional torus”, Izv. Math., 74:4 (2010), 805–817
52.
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “2D-Schrödinger Operator, (2+1) evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data”, Russian Math. Surveys, 65:3 (2010), 580–582
53.
Irina A. Melnik, Andrey E. Mironov, “Baker–Akhiezer Modules on Rational Varieties”, SIGMA, 6 (2010), 30–15 , arXiv: 1004.1009
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles”, Theoret. and Math. Phys., 164:3 (2010), 1110–1127
55.
A. E. Mironov, “Finite-gap minimal Lagrangian surfaces in $CP^2$”, OCAMI (Osaka City University Advanced Mathematical Institute) Studies Series, 3 (2010), 185–196
2009
56.
A. E. Mironov, “On commuting differential operators of rank $2$”, Sib. Èlektron. Mat. Izv., 6 (2009), 533–536
2008
57.
A. E. Mironov, “Spectral Data for Hamiltonian-Minimal Lagrangian Tori in $\mathbb C\mathrm P^2$”, Proc. Steklov Inst. Math., 263 (2008), 112–126
58.
A. E. Mironov, D. Zuo, “On a Family of Conformally Flat Hamiltonian–Minimal Lagrangian Tori in $CP^3$”, International Mathematics Research Notices, 2008:9 (2008), rnn078
A. E. Mironov, “Relationship Between Symmetries of the Tzizeica Equation and the Novikov–Veselov Hierarchy”, Math. Notes, 82:4 (2007), 569–572
60.
A. E. Mironov, “On a Family of Conformally Flat Minimal Lagrangian Tori in $\mathbb CP^3$”, Math. Notes, 81:3 (2007), 329–337
61.
A. E. Mironov, “Commuting difference operators with polynomial coefficients”, Russian Math. Surveys, 62:4 (2007), 819–820
62.
A. E. Mironov, “Discrete analogues of Dixmier operators”, Sb. Math., 198:10 (2007), 1433–1442
63.
A. E. Mironov, I. A. Taimanov, “Some algebraic examples of Frobenius manifolds”, Theoret. and Math. Phys., 151:2 (2007), 604–613
2006
64.
A. E. Mironov, I. A. Taimanov, “Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves”, Proc. Steklov Inst. Math., 255 (2006), 169–184
2005
65.
A. E. Mironov, “Commuting Rank 2 Differential Operators Corresponding to a Curve of Genus 2”, Funct. Anal. Appl., 39:3 (2005), 240–243
2004
66.
A. E. Mironov, “Spectral subvarieties of a principally polarized Abelian variety”, Russian Math. Surveys, 59:5 (2004), 969–970
67.
A. E. Mironov, “Veselov-Novikov hierarchy of equations, and integrable deformations of minimal Lagrangian tori in $\mathbb CP^2$”, Sib. Èlektron. Mat. Izv., 1 (2004), 38–46
68.
A. E. Mironov, “A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2”, Sb. Math., 195:5 (2004), 711–722
69.
A. E. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Sb. Math., 195:1 (2004), 85–96
70.
A. E. Mironov, “On Hamiltonian-Minimal and Minimal Lagrangian Submanifolds in $C^n$ and $CP^n$”, Doklady Mathematics, 69:3 (2004), 352–354
2003
71.
A. E. Mironov, “On Hamiltonian-minimal Lagrangian tori in $\mathbb{C}P^2$”, Siberian Math. J., 44:6 (2003), 1039–1042
2002
72.
A. E. Mironov, “Commutative rings of differential operators corresponding to multidimensional algebraic varieties”, Siberian Math. J., 43:5 (2002), 888–898
73.
A. E. Mironov, “Real commutative differential operators associated with two-dimensional Abelian varieties”, Siberian Math. J., 43:1 (2002), 97–113
2001
74.
A. E. Mironov, “On nonlinear equations integrable in theta-functions of nonprincipally polarized Abelian varieties”, Siberian Math. J., 42:1 (2001), 99–107
2000
75.
A. E. Mironov, “Commutative rings of differential operators connected with two-dimensional Abelian varieties”, Siberian Math. J., 41:6 (2000), 1148–1161
76.
A. Z. Ananin, A. E. Mironov, “The moduli space of 2-dimensional algebras.”, Communications in Algebra., 28:9 (2000), 4481–4488
Birkhoff billiards in cones A. E. Mironov Dynamics days in Sirius. On the occasion of academician Dmitry V. Treschev’s anniversary October 29, 2024 15:00
On commuting difference operators Andrey Mironov International Conference "Analytic Theory of Differential and Difference Equations" Dedicated to the Memory of Andrey Bolibrukh January 29, 2021 12:00
19.
Выступление A. E. Mironov General Meeting of the Branch of Mathematical Sciences, RAS, 2020 December 7, 2020 13:40
20.
Magnetic billiards in a strong constant magnetic field A. E. Mironov International Conference "Classical Mechanics, Dynamical Systems and Mathematical Physics" on the occasion of V. V. Kozlov 70th birthday January 23, 2020 12:35
Угловой бильярд и гипотеза Биркгофа A. E. Mironov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) February 17, 2016 18:30
Интегрируемые геодезические потоки на двумерном торе A. E. Mironov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) March 12, 2014 18:30
Разностные операторы Кричевера-Новикова A. E. Mironov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) April 10, 2013 18:30
43.
Commuting differential operators A. E. Mironov Seminar "Complex analysis in several variables" (Vitushkin Seminar) November 14, 2012 16:45
Коммутирующие обыкновенные дифференциальные операторы ранга два A. E. Mironov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) October 3, 2012 18:30
Модули Бейкера–Ахиезера на рациональных многообразиях A. E. Mironov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) December 2, 2009 18:30
Дискретный аналог операторов Диксьме A. E. Mironov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) September 27, 2006