|
|
International youth conference "Geometry & Control"
April 15, 2014 17:00, Poster session, Moscow, Steklov Mathematical Institute of RAS
|
|
|
|
|
|
Discrete Dynamics of the Tyurin Parameters and Commuting Difference Operators
Gulnara S. Mauleshova, Andrey E. Mironov Sobolev Institute of Mathematics, Novosibirsk, Russia
|
|
Abstract:
We study commuting difference operators
of rank two. In the case of hyperelliptic spectral curves an
equation which is equivalent to the Krichever – Novikov equations on Tyurin parameters is obtained. With the help of
this equation examples of operators corresponding to
hyperelliptic spectral curves of arbitrary genus are constructed. Among
these examples there are operators with polynomial and trigonometric
coefficients.
If two difference operators
$$
L_4=\sum^{2}_{i=-2}
u_i(n)T^i, \qquad L_{4g+2}=\sum^{2g+1}_{i=-(2g+1)}v_i(n)T^i,\qquad u_2=v_{2g+1}=1
$$
commute, where $T$ — shift operator, then there is a nonzero polynomial $F(z,w)$ such that $F(L_4,L_{4g+2})=0.$
The polynomial $F$ defines the spectral curve of
$L_4,L_{4g+2}$
$$
\Gamma=\{(z,w)\in {\mathbb C}^2| F(z,w)=0\}.
$$
The common eigenvalues are parametrized by the spectral curve
$$
L_4\psi=z\psi, \quad L_{4g+2}\psi=w\psi, (z,w)\in \Gamma.
$$
The rank of the pair $L_4,L_{4g+2}$ is called the dimension of the space of common eigenfunctions
for fixed eigenvalues
$$
l={\rm dim}\{\psi:L_4\psi=z\psi, \ \ L_{4g+2}\psi=w\psi,\ \ (z,w)\in \Gamma.\}
$$
The curve $\Gamma$ admits a holomorphic involution
$$\sigma:\Gamma\rightarrow\Gamma,{\ }{\ }{\ }\sigma(z,w)=\sigma(z,-w).$$
The common eigenfunctions $L_4$ and $L_{4g+2}$ satisfy the equation
$$
\psi_{n+1}(P)=\chi_1(n,P)\psi_{n-1}(P)+\chi_2(n,P)\psi_n(P),
$$
The functions $\chi_1(n,P)$ and $\chi_2(n,P)$ are rational on $\Gamma$ and
have $2g$ simple poles depending on $n$. In addition the function $\chi_2(n,P)$
has a simple pole in $q$. For finding $L_4$ and $L_{4g+2}$ it is sufficient to find $\chi_1$ and
$\chi_2.$
The following theorems are proved.
$ $
Theorem 1.
If
$$
\chi_1(n,P)=\chi_1(n,\sigma(P)),\qquad
\chi_2(n,P)=-\chi_2(n,\sigma(P)),
$$
then $L_4$ has the form
$$
L_4=(T+V_nT^{-1})^2+W_n,
$$
herewith
$$
\chi_1=-V_n\frac{Q_{n+1}}{Q_{n}},\qquad
\chi_2=\frac{w}{Q_n},
$$
where
$$
Q_n(z)=z^g+\alpha_{g-1}(n)z^{g-1}+\ldots+\alpha_0(n).
$$
Functions $V_n, W_n, Q_n$ satisfy the following equation
$$
F_g(z)=Q_{n-1}Q_{n+1}V_n+Q_{n}(Q_{n+2}V_{n+1}+Q_{n+1}(z-V_n-V_{n+1}-W_n)).
$$
Theorem 2.
The operator
$$
L_4=(T+(r_3n^3+r_2n^2+r_1n+r_0)T^{-1})^2+g(g+1)r_3n
$$
commutes with a difference operator $L_{4g+2}$ of order $4g+2$, where $r_0, r_1, r_2, r_3$ — parameters, $r_3 \neq 0$.
$ $
Theorem 3.
The operator
$$
L_4=(T+(r_1a^n+r_0)T^{-1})^2+(a^{2g+1}-a^{g+1}-a^g+1)r_1a^{n-g}
$$
commutes with a difference operator $L_{4g+2},$ where $r_0, r_1, a$ are
parameters such that $r_1 \neq 0,$ $a \neq 0,$ $a^{2g+1}-a^{g+1}-a^g+1
\neq 0$.
$ $
Theorem 4.
The operator
$$
L_4=(T+(r_1\cos(n)+r_0)T^{-1})^2-4r_1\sin(\frac{g}{2})\sin(\frac{g+1}{2})\cos(n+\frac{1}{2})
$$
commutes with a difference operator $L_{4g+2},$ where $r_0, r_1$ — parameters, $r_1 \neq 0.$
Supplementary materials:
abstract.pdf (78.0 Kb)
Language: English
References
-
I.M. Krichever, S.P. Novikov, Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles // Russian Math. Surveys. 2003. 58:3. 473–510.
|
|