Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Carillo, Sandra

Statistics Math-Net.Ru
Total publications: 2
Scientific articles: 2

Number of views:
This page:104
Abstract pages:636
Full texts:198
References:82
Associate professor
PhD (1989)
Speciality: 01.01.03 (Mathematical physics)
Birth date: 23.06.1955
E-mail: ,
Website: http://www.sbai.uniroma1.it/~sandra.carillo/
Keywords: Baecklund transformationa, nonlinear evolution equations, structural properties, non-commutative equations, materials with memory.

Subject:

nonlinear evolution equations, Baecklund transformationa, materials with memory

Biography

See my personal web page and Google Scholar

https://scholar.google.it/citations?user=G-EaBPkAAAAJ&hl=en

   
Main publications:
  1. Carillo, S. and Fuchssteiner, B., “The abundant symmetry structure of hierarchies of nonlinear equations obtained by reciprocal links”, Journal of Mathematical Physics, 30:7 (1989), 1606-1613
  2. Carillo, S. and Schiebold, C., “Matrix korteweg-de vries and modified korteweg-de vries hierarchies: Noncommutative soliton solutions”, doi:10.1063/1.3576185, Journal of Mathematical Physics, 52:5 (2011)
  3. Carillo, S. and Schiebold, C., “Noncommutative korteweg-de vries and modified korteweg-de vries hierarchies via recursion methods”, doi:10.1063/1.3155080, Journal of Mathematical Physics, 50:7 (2009)
  4. Fuchssteiner, B. and Carillo, S., “The action-angle transformation for soliton equations”, doi:10.1016/0378-4371(90)90078-7, Physica A: Statistical Mechanics and its Applications, 166:3 (1990), 651-675
  5. Carillo, S., Chipot, M., Valente, V. and Vergara Caffarelli, G., “A magneto-viscoelasticity problem with a singular memory kernel”, 10.1016/j.nonrwa.2016.10.014, Nonlinear Analysis: Real World Applications, 35:C (2017), 200-210

https://www.mathnet.ru/eng/person121585
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2018
1. S. Carillo, F. Zullo, “Ermakov–Pinney and Emden–Fowler equations: New solutions from novel Bäcklund transformations”, TMF, 196:3 (2018),  373–389  mathnet  mathscinet  elib; Theoret. and Math. Phys., 196:3 (2018), 1268–1281  isi  scopus 7
2016
2. Sandra Carillo, Mauro Lo Schiavo, Cornelia Schiebold, “Bäcklund Transformations and Non-Abelian Nonlinear Evolution Equations: a Novel Bäcklund Chart”, SIGMA, 12 (2016), 087, 17 pp.  mathnet  isi  scopus 10

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024