Processing math: 0%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 196, Number 3, Pages 373–389
DOI: https://doi.org/10.4213/tmf9508
(Mi tmf9508)
 

This article is cited in 7 scientific papers (total in 7 papers)

Ermakov–Pinney and Emden–Fowler equations: New solutions from novel Bäcklund transformations

S. Carilloab, F. Zulloc

a Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Università di Roma "La Sapienza". Roma, Italy
b Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Roma, Italy
c Brescia, Italy
Full-text PDF (555 kB) Citations (7)
References:
Abstract: We study the class of nonlinear ordinary differential equations y, where F is a smooth function. Various ordinary differential equations with a well-known importance for applications belong to this class of nonlinear ordinary differential equations. Indeed, the Emden–Fowler equation, the Ermakov–Pinney equation, and the generalized Ermakov equations are among them. We construct Bäcklund transformations and auto-Bäcklund transformations: starting from a trivial solution, these last transformations induce the construction of a ladder of new solutions admitted by the given differential equations. Notably, the highly nonlinear structure of this class of nonlinear ordinary differential equations implies that numerical methods are very difficult to apply.
Keywords: nonlinear ordinary differential equation, Bäcklund transformation, Schwarzian derivative, Ermakov–Pinney equation, Emden–Fowler equation.
Funding agency Grant number
Istituto Nazionale di Alta Matematica "Francesco Severi"
Instituto Nazionale di Fisica Nucleare
Sapienza Università di Roma
This research is supported by the G.N.F.M. INdAM, Sezione di Roma INFN, and the Università di Roma “La Sapienza.”
Received: 12.11.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 196, Issue 3, Pages 1268–1281
DOI: https://doi.org/10.1134/S0040577918090027
Bibliographic databases:
Document Type: Article
PACS: 02.30.Hq, 02.10.De, 02.30.Ik
MSC: 34A25, 37K35
Language: Russian
Citation: S. Carillo, F. Zullo, “Ermakov–Pinney and Emden–Fowler equations: New solutions from novel Bäcklund transformations”, TMF, 196:3 (2018), 373–389; Theoret. and Math. Phys., 196:3 (2018), 1268–1281
Citation in format AMSBIB
\Bibitem{CarZul18}
\by S.~Carillo, F.~Zullo
\paper Ermakov--Pinney and Emden--Fowler equations: New solutions from novel B\"acklund transformations
\jour TMF
\yr 2018
\vol 196
\issue 3
\pages 373--389
\mathnet{http://mi.mathnet.ru/tmf9508}
\crossref{https://doi.org/10.4213/tmf9508}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3849104}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...196.1268C}
\elib{https://elibrary.ru/item.asp?id=35410237}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 196
\issue 3
\pages 1268--1281
\crossref{https://doi.org/10.1134/S0040577918090027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447277900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053405830}
Linking options:
  • https://www.mathnet.ru/eng/tmf9508
  • https://doi.org/10.4213/tmf9508
  • https://www.mathnet.ru/eng/tmf/v196/i3/p373
  • This publication is cited in the following 7 articles:
    1. Sandra Carillo, Alexander Chichurin, Galina Filipuk, Federico Zullo, “Schwarzian derivative, Painlevé XXV–Ermakov equation, and Bäcklund transformations”, Mathematische Nachrichten, 297:1 (2024), 83  crossref  mathscinet
    2. Alexander Chichurin, Galina Filipuk, “On special solutions to the Ermakov–Painlevé XXV equation”, Random Matrices: Theory Appl., 13:01 (2024)  crossref  mathscinet
    3. X. Dong, Q. Liu, W. Li, Z. Zeng, S. Li, X. Xia, “Elastic transformation and its inverse transformation for solving first- and third-order nonlinear variable coefficient ordinary differential equations”, Rocky Mountain J. Math., 53:2 (2023)  crossref
    4. Sandra Carillo, Mauro Lo Schiavo, Cornelia Schiebold, Nonlinear Dynamics of Structures, Systems and Devices, 2020, 75  crossref
    5. C. Rogers, “Reciprocal Gausson phenomena in a Korteweg capillarity system”, Meccanica, 54:10 (2019), 1515–1523  crossref  mathscinet  isi
    6. S. Carillo, F. Zullo, “The Gross-Pitaevskii equation: Backlund transformations and admitted solutions”, Ric. Mat., 68:2 (2019), 503–512  crossref  mathscinet  zmath  isi
    7. C. Rogers, “On modulated multi-component nls systems: Ermakov invariants and integrable symmetry reduction”, Ric. Mat., 68:2 (2019), 615–627  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :182
    References:50
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025