|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
S. Iskandarov, A. Khalilov, “Method of Lyapunov functionals for a first order linear Volterra integro-differential equation with delay on a semiaxis”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 3, 62–64 ; Moscow University Mathematics Bulletin, 78:3 (2023), 150–152 |
|
2021 |
2. |
S. Iskandarov, E. A. Komartsova, “Specific asymptotic stability of solutions to a linear homogeneous Volterra integro-differential equation of the fourth order”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1, 22–28 ; Moscow University Mathematics Bulletin, 76:1 (2021), 22–28 |
|
2018 |
3. |
S. Iskandarov, “Uniqueness of solutions to first and third order Volterra type integral equations on a semiaxis”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 6, 70–72 ; Moscow University Mathematics Bulletin, 73:6 (2018), 266–268 |
1
|
|
2017 |
4. |
S. Iskandarov, G. T. Khalilova, “On lower estimates of solutions and their derivatives to a fourth-order linear integrodifferential Volterra equation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017), 43–49 ; J. Math. Sci. (N. Y.), 230:5 (2018), 688–694 |
2
|
5. |
S. Iskandarov, “On a method of the study of specific asymptotic stability of solutions to a sixth-order linear integrodifferential Volterra equation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017), 38–42 ; J. Math. Sci. (N. Y.), 230:5 (2018), 683–687 |
6. |
S. Iskandarov, “Estimates and asymptotic properties of solutions and their derivatives for a weakly nonlinear third order ordinary differential equation”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 2, 62–65 ; Moscow University Mathematics Bulletin, 72:2 (2017), 77–80 |
|
1995 |
7. |
S. Iskandarov, “Lower bounds for the solutions of a first-order linear homogeneous Volterra integro-differential equation”, Differ. Uravn., 31:9 (1995), 1508–1512 ; Differ. Equ., 31:9 (1995), 1462–1466 |
|
1991 |
8. |
S. Iskandarov, “Modification of V. Volterra's method for studying the asymptotic behavior of solutions of a second-order linear equation”, Differ. Uravn., 27:9 (1991), 1638–1639 |
|
Organisations |
|
|
|
|