Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2018, Number 6, Pages 70–72 (Mi vmumm587)  

This article is cited in 1 scientific paper (total in 1 paper)

Short notes

Uniqueness of solutions to first and third order Volterra type integral equations on a semiaxis

S. Iskandarov

Institute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic
Full-text PDF (225 kB) Citations (1)
References:
Abstract: We establish sufficient conditions for the uniqueness of solutions in the space of functions continuous on the semiaxis of Volterra integral equations of first and third kinds in the case when the kernels of these equations can be alternating on the diagonal. Illustrative examples are given.
Key words: Volterra integral equation of first kind, Volterra integral equation of third kind, uniqueness of the solution, method of weight and бutting functions.
Received: 11.12.2017
English version:
Moscow University Mathematics Bulletin, 2018, Volume 73, Issue 6, Pages 266–268
DOI: https://doi.org/10.3103/S0027132218060086
Bibliographic databases:
Document Type: Article
UDC: 517.968.22
Language: Russian
Citation: S. Iskandarov, “Uniqueness of solutions to first and third order Volterra type integral equations on a semiaxis”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 6, 70–72; Moscow University Mathematics Bulletin, 73:6 (2018), 266–268
Citation in format AMSBIB
\Bibitem{Isk18}
\by S.~Iskandarov
\paper Uniqueness of solutions to first and third order Volterra type integral equations on a semiaxis
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2018
\issue 6
\pages 70--72
\mathnet{http://mi.mathnet.ru/vmumm587}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920735}
\zmath{https://zbmath.org/?q=an:1423.45002}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2018
\vol 73
\issue 6
\pages 266--268
\crossref{https://doi.org/10.3103/S0027132218060086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460777100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062486817}
Linking options:
  • https://www.mathnet.ru/eng/vmumm587
  • https://www.mathnet.ru/eng/vmumm/y2018/i6/p70
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:105
    Full-text PDF :23
    References:25
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024