01.01.09 (Discrete mathematics and mathematical cybernetics)
Birth date:
26.10.1953
E-mail:
Keywords:
spectral theory of differential and integral operators; optimization theory.
Main publications:
Kornev V. V., Khromov A. P. O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh // Matem. sb., 2001, t. 192, # 10, s. 33–50.
Kornev V. V., Khromov A. P. O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh // Dokl. RAN, 2001, t. 379, # 6, s. 741–744.
Kornev V. V. Korrektnost lineino-vypukloi zadachi optimalnogo upravleniya s zakreplennym pravym kontsom // Teoriya funktsii i priblizhenii: Trudy 3-i Saratovskoi zimnei shkoly, 1988, ch. 2, s. 105–107.
Kornev V. V. Printsip maksimuma dlya gladko-vypuklykh zadach so smeshannymi ogranicheniyami // Teoriya funktsii i priblizhenii: Trudy 5-i Saratovskoi zimnei shkoly, 1996, ch. 2.
V. V. Kornev, A. P. Khromov, “Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 172 (2019), 119–133
A. P. Khromov, V. V. Kornev, “Classical and generalized solutions of a mixed problem for a nonhomogeneous wave equation”, Zh. Vychisl. Mat. Mat. Fiz., 59:2 (2019), 286–300; Comput. Math. Math. Phys., 59:2 (2019), 275–289
V. V. Kornev, A. P. Khromov, “A mixed problem for an inhomogeneous wave equation with a summable potential”, Zh. Vychisl. Mat. Mat. Fiz., 57:10 (2017), 1692–1707; Comput. Math. Math. Phys., 57:10 (2017), 1666–1681
V. V. Kornev, A. P. Khromov, “Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation”, Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016), 403–413
V. V. Kornev, A. P. Khromov, “A resolvent approach in the Fourier method for the wave equation: The non-selfadjoint case”, Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015), 1156–1167; Comput. Math. Math. Phys., 55:7 (2015), 1138–1149
V. V. Kornev, A. P. Khromov, “Resolvent approach to the Fourier method in a mixed problem for the wave equation”, Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015), 621–630; Comput. Math. Math. Phys., 55:4 (2015), 618–627
V. V. Kornev, A. P. Khromov, “Dirac system with undifferentiable potential and antiperiodic boundary conditions”, Izv. Saratov Univ. Math. Mech. Inform., 13:3 (2013), 28–35
V. V. Kornev, “On Convergence of Expansions in Eigen Functions of Integral Operators with Discontinuous Kernel”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 59–62
2012
10.
M. Sh. Burlutskaya, V. V. Kornev, A. P. Khromov, “Dirac system with non-differentiable potential and periodic boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012), 1621–1632
V. V. Kornev, A. P. Khromov, “Operator integration with an involution having a power singularity”, Izv. Saratov Univ. Math. Mech. Inform., 8:4 (2008), 18–33
V. V. Kornev, “Absolute and Uniform Convergence of Eigenfunction Expansions of Integral Operators with Kernels Admitting Derivative Discontinuities on the Diagonals”, Mat. Zametki, 81:5 (2007), 713–723; Math. Notes, 81:5 (2007), 638–648
2005
13.
V. V. Kornev, A. P. Khromov, “On the absolute convergence of expansions in eigenfunctions of differential and integral operators”, Dokl. Akad. Nauk, 400:3 (2005), 304–308
14.
V. V. Kornev, A. P. Khromov, “Absolute convergence of expansions in eigen- and adjoint functions of
an integral operator with a variable limit of integration”, Izv. RAN. Ser. Mat., 69:4 (2005), 59–74; Izv. Math., 69:4 (2005), 703–717
V. V. Kornev, A. P. Khromov, “Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals”, Mat. Sb., 192:10 (2001), 33–50; Sb. Math., 192:10 (2001), 1451–1469