Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2019, Volume 172, Pages 119–133
DOI: https://doi.org/10.36535/0233-6723-2019-172-119-133
(Mi into551)
 

This article is cited in 3 scientific papers (total in 3 papers)

Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints

V. V. Kornev, A. P. Khromov

Saratov State University
Full-text PDF (221 kB) Citations (3)
References:
Abstract: Using the Fourier method, we obtain necessary and sufficient conditions for the existence of a classical solution of the mixed problem for a homogeneous wave equation with summable potential and fixed endpoints and also obtain an explicit representation of the solution in the form of a rapidly converging series.
Keywords: mixed task, wave equation, summable potential, Fourier method.
Document Type: Article
UDC: 517.95, 517.984
MSC: 34B45, 35L05
Language: Russian
Citation: V. V. Kornev, A. P. Khromov, “Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints”, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 172, VINITI, Moscow, 2019, 119–133
Citation in format AMSBIB
\Bibitem{KorKhr19}
\by V.~V.~Kornev, A.~P.~Khromov
\paper Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints
\inbook Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2019
\vol 172
\pages 119--133
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into551}
\crossref{https://doi.org/10.36535/0233-6723-2019-172-119-133}
Linking options:
  • https://www.mathnet.ru/eng/into551
  • https://www.mathnet.ru/eng/into/v172/p119
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :142
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024