-
Amou, M, “On linear independence of theta values”, Monatshefte fur Mathematik, 144:1 (2005), 1
-
Peter Bundschuh, Keijo Väänänen, “Linear Independence of q-Analogues of Certain Classical Constants”, Results. Math., 47:1-2 (2005), 33
-
Zudilin, W, “The hypergeometric equation and Ramanujan functions”, Ramanujan Journal, 7:4 (2003), 435
-
Kim, D, “Algebraic numbers, transcendental numbers and elliptic curves derived from infinite products”, Journal of the Korean Mathematical Society, 40:6 (2003), 977
-
Paula B. Cohen, Developments in Mathematics, 10, Number Theory and Modular Forms, 2003, 367
-
В. В. Зудилин, “О диофантовых задачах для $q$-дзета-значений”, Матем. заметки, 72:6 (2002), 936–940
; W. V. Zudilin, “Diophantine Problems for $q$-Zeta Values”, Math. Notes, 72:6 (2002), 858–862
-
В. В. Зудилин, “О мере иррациональности $q$-аналога $\zeta(2)$”, Матем. сб., 193:8 (2002), 49–70
; W. V. Zudilin, “On the irrationality measure for a $q$-analogue of $\zeta(2)$”, Sb. Math., 193:8 (2002), 1151–1172
-
Matala-Aho, T, “Irrationality measures for the series of reciprocals from recurrence sequences”, Journal of Number Theory, 96:2 (2002), 275
-
Zudilin, W, “Remarks on irrationality of q-harmonic series”, Manuscripta Mathematica, 107:4 (2002), 463
-
Bertolin, C, “Periods of 1-motives and transcendence”, Journal of Number Theory, 97:2 (2002), 204
-
Nesterenko Y.V., “On the algebraic independence of numbers”, Panorama in Number Theory Or the View From Baker'S Garden, 2002, 148–167
-
В. В. Зудилин, “Об иррациональности $\zeta_q(2)$”, УМН, 56:6(342) (2001), 147–148
; W. V. Zudilin, “On the irrationality of $\zeta _q(2)$”, Russian Math. Surveys, 56:6 (2001), 1183–1185
-
Bundschuh, P, “Linear independence measures for infinite products”, Manuscripta Mathematica, 105:2 (2001), 253
-
Grinspan, P, “A measure of simultaneous approximation for quasi-modular functions”, Ramanujan Journal, 5:1 (2001), 21
-
Bundschuh P., “Arithmetical properties of the solutions of certain functional equations”, Number Theory, 2001, 25–42
-
В. В. Зудилин, “Тэта-константы и дифференциальные уравнения”, Матем. сб., 191:12 (2000), 77–122
; W. V. Zudilin, “Thetanulls and differential equations”, Sb. Math., 191:12 (2000), 1827–1871
-
Duverney, D, “On some arithmetical properties of Rogers-Ramanujan continued fraction”, Osaka Journal of Mathematics, 37:3 (2000), 759
-
Diaz, G, “Algebraic independence and transcendence: Links between elliptic and modular viewpoints”, Ramanujan Journal, 4:2 (2000), 157
-
Matala-Aho, T, “On diophantine approximations of mock theta functions of third order”, Ramanujan Journal, 4:1 (2000), 13
-
Saradha, N, “Transcendence measure for eta/omega”, Acta Arithmetica, 92:1 (2000), 11