-
Lee J.-J., Murty M.R., Park D., “Generalization of a Theorem of Hurwitz”, J. Ramanujan Math. Soc., 31:3 (2016), 215–226
-
Yifan Yang, “Ramanujan-type identities for Shimura curves”, Isr. J. Math., 214:2 (2016), 699
-
Kurt Girstmair, “Häufigkeiten bei Kettenbrüchen und transzendente Zahlen”, Math Semesterber, 63:2 (2016), 227
-
Antanas Laurinčikas, From Arithmetic to Zeta-Functions, 2016, 231
-
Yasushi Komori, Kohji Matsumoto, Hirofumi Tsumura, “Infinite series involving hyperbolic functions”, Lith Math J, 2015
-
Antanas Laurinčikas, “A general joint discrete universality theorem for Hurwitz zeta-functions”, Journal of Number Theory, 2015
-
Buivydas E., Laurincikas A., “a Discrete Version of the Mishou Theorem”, Ramanujan J., 38:2 (2015), 331–347
-
Binyamini G., Novikov D., “Multiplicities of Noetherian Deformations”, Geom. Funct. Anal., 25:5 (2015), 1413–1439
-
Buivydas E., Laurincikas A., “a Generalized Joint Discrete Universality Theorem For the Riemann and Hurwitz Zeta-Functions”, Lith. Math. J., 55:2 (2015), 193–206
-
Carsten Elsner, “Algebraic independence results for values of theta-constants”, Funct. Approx. Comment. Math., 52:1 (2015)
-
M. Ram Murty, Chester Weatherby, “Special values of the Gamma function at CM points”, Ramanujan J, 2014
-
Antanas Laurinčikas, “A discrete universality theorem for the Hurwitz zeta-function”, Journal of Number Theory, 2014
-
А. Лауринчикас, “Совместная дискретная универсальность дзета-функций Гурвица”, Матем. сб., 205:11 (2014), 75–94
; A. Laurinčikas, “Joint discrete universality of Hurwitz zeta functions”, Sb. Math., 205:11 (2014), 1599–1619
-
M. Ram Murty, Naomi Tanabe, “On the nature of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>γ</mml:mi></mml:mrow></mml:msup></mml:math> and non-vanishing of derivatives of L-series at <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="”, Journal of Number Theory, 2014
-
Komori Ya., Matsumoto K., Tsumura H., “Hyperbolic-Sine Analogues of Eisenstein Series, Generalized Hurwitz Numbers, and Q-Zeta Functions”, Forum Math., 26:4 (2014), 1071–1115
-
Gun S., Saha B., “On the Zeros of Weakly Holomorphic Modular Forms”, Arch. Math., 102:6 (2014), 531–543
-
Zorin E., “Multiplicity Estimates For Algebraically Dependent Analytic Functions”, Proc. London Math. Soc., 108:4 (2014), 989–1029
-
Gun S., Murty M.R., Rath P., “A Note on Special Values of l-Functions”, Proc. Amer. Math. Soc., 142:4 (2014), 1147–1156
-
M. Ram Murty, Purusottam Rath, Transcendental Numbers, 2014, 75
-
M. Ram Murty, Purusottam Rath, Transcendental Numbers, 2014, 179