1. Lee J.-J., Murty M.R., Park D., “Generalization of a Theorem of Hurwitz”, J. Ramanujan Math. Soc., 31:3 (2016), 215–226  mathscinet  zmath  isi  scopus
  2. Yifan Yang, “Ramanujan-type identities for Shimura curves”, Isr. J. Math., 214:2 (2016), 699  crossref
  3. Kurt Girstmair, “Häufigkeiten bei Kettenbrüchen und transzendente Zahlen”, Math Semesterber, 63:2 (2016), 227  crossref
  4. Antanas Laurinčikas, From Arithmetic to Zeta-Functions, 2016, 231  crossref
  5. Yasushi Komori, Kohji Matsumoto, Hirofumi Tsumura, “Infinite series involving hyperbolic functions”, Lith Math J, 2015  crossref  mathscinet  scopus  scopus  scopus
  6. Antanas Laurinčikas, “A general joint discrete universality theorem for Hurwitz zeta-functions”, Journal of Number Theory, 2015  crossref
  7. Buivydas E., Laurincikas A., “a Discrete Version of the Mishou Theorem”, Ramanujan J., 38:2 (2015), 331–347  crossref  mathscinet  zmath  isi  scopus  scopus
  8. Binyamini G., Novikov D., “Multiplicities of Noetherian Deformations”, Geom. Funct. Anal., 25:5 (2015), 1413–1439  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  9. Buivydas E., Laurincikas A., “a Generalized Joint Discrete Universality Theorem For the Riemann and Hurwitz Zeta-Functions”, Lith. Math. J., 55:2 (2015), 193–206  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  10. Carsten Elsner, “Algebraic independence results for values of theta-constants”, Funct. Approx. Comment. Math., 52:1 (2015)  crossref
  11. M. Ram Murty, Chester Weatherby, “Special values of the Gamma function at CM points”, Ramanujan J, 2014  crossref  mathscinet  scopus  scopus  scopus
  12. Antanas Laurinčikas, “A discrete universality theorem for the Hurwitz zeta-function”, Journal of Number Theory, 2014  crossref
  13. А. Лауринчикас, “Совместная дискретная универсальность дзета-функций Гурвица”, Матем. сб., 205:11 (2014), 75–94  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. Laurinčikas, “Joint discrete universality of Hurwitz zeta functions”, Sb. Math., 205:11 (2014), 1599–1619  crossref  isi
  14. M. Ram Murty, Naomi Tanabe, “On the nature of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>γ</mml:mi></mml:mrow></mml:msup></mml:math> and non-vanishing of derivatives of L-series at <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="”, Journal of Number Theory, 2014  crossref  scopus  scopus  scopus
  15. Komori Ya., Matsumoto K., Tsumura H., “Hyperbolic-Sine Analogues of Eisenstein Series, Generalized Hurwitz Numbers, and Q-Zeta Functions”, Forum Math., 26:4 (2014), 1071–1115  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  16. Gun S., Saha B., “On the Zeros of Weakly Holomorphic Modular Forms”, Arch. Math., 102:6 (2014), 531–543  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  17. Zorin E., “Multiplicity Estimates For Algebraically Dependent Analytic Functions”, Proc. London Math. Soc., 108:4 (2014), 989–1029  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  18. Gun S., Murty M.R., Rath P., “A Note on Special Values of l-Functions”, Proc. Amer. Math. Soc., 142:4 (2014), 1147–1156  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  19. M. Ram Murty, Purusottam Rath, Transcendental Numbers, 2014, 75  crossref
  20. M. Ram Murty, Purusottam Rath, Transcendental Numbers, 2014, 179  crossref
Предыдущая
1
2
3
4
5
6
7
8
Следующая