1. Gomez-Ullate D., Grandati Y., Milson R., “Corrigendum on the Proof of Completeness For Exceptional Hermite Polynomials”, J. Approx. Theory, 253 (2020), 105350  crossref  isi
  2. David Gómez-Ullate, Robert Milson, Tutorials, Schools, and Workshops in the Mathematical Sciences, Orthogonal Polynomials, 2020, 335  crossref
  3. Angeles Garcia-Ferrero M. Gomez-Ullate D. Milson R., “A Bochner Type Characterization Theorem For Exceptional Orthogonal Polynomials”, J. Math. Anal. Appl., 472:1 (2019), 584–626  crossref  mathscinet  isi  scopus
  4. Carinena J.F. Inzunza L. Plyushchay M.S., “Rational Deformations of Conformal Mechanics”, Phys. Rev. D, 98:2 (2018), 026017  crossref  mathscinet  isi  scopus
  5. Victor Yu. Novokshenov, “Generalized Hermite Polynomials and Monodromy-Free Schrödinger Operators”, SIGMA, 14 (2018), 106, 13 pp.  mathnet  crossref
  6. Gomez-Ullate D. Grandati Y. Milson R., “Durfee Rectangles and Pseudo-Wronskian Equivalences For Hermite Polynomials”, Stud. Appl. Math., 141:4, SI (2018), 596–625  crossref  mathscinet  zmath  isi  scopus
  7. Carinena J.F. Plyushchay M.S., “Abc of Ladder Operators For Rationally Extended Quantum Harmonic Oscillator Systems”, J. Phys. A-Math. Theor., 50:27 (2017), 275202  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  8. Kh. K. Ishkin, “Localization criterion for the spectrum of the Sturm–Liouville operator on a curve”, St. Petersburg Math. J., 28:1 (2017), 37–63  mathnet  crossref  mathscinet  isi  elib
  9. Carinena J.F. Plyushchay M.S., “Ground-state isolation and discrete flows in a rationally extended quantum harmonic oscillator”, Phys. Rev. D, 94:10 (2016), 105022  crossref  mathscinet  isi  elib  scopus
  10. Haese-Hill W.A. Hallnaes M.A. Veselov A.P., “Complex Exceptional Orthogonal Polynomials and Quasi-invariance”, Lett. Math. Phys., 106:5 (2016), 583–606  crossref  mathscinet  zmath  isi  scopus
  11. Andrey M. Pupasov-Maksimov, “Analytical simulations of double-well, triple-well and multi-well dynamics via rationally extended Harmonic oscillator”, J. Phys.: Conf. Ser., 670 (2016), 012042  crossref
  12. Pupasov-Maksimov A.M., “Propagators of Isochronous An-Harmonic Oscillators and Mehler Formula For the Exceptional Hermite Polynomials”, Ann. Phys., 363 (2015), 122–135  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
  13. Kuijlaars A.B.J. Milson R., “Zeros of Exceptional Hermite Polynomials”, J. Approx. Theory, 200 (2015), 28–39  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
  14. Gomez-Ullate D. Grandati Y. Milson R., “Rational Extensions of the Quantum Harmonic Oscillator and Exceptional Hermite Polynomials”, J. Phys. A-Math. Theor., 47:1 (2014), 015203  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
  15. Adrian D. Hemery, Alexander P. Veselov, “Periodic Vortex Streets and Complex Monodromy”, SIGMA, 10 (2014), 114, 18 pp.  mathnet  crossref
  16. Marquette I. Quesne Ch., “Combined State-Adding and State-Deleting Approaches To Type III Multi-Step Rationally Extended Potentials: Applications To Ladder Operators and Superintegrability”, J. Math. Phys., 55:11 (2014), 112103  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
  17. Gomez-Ullate D. Grandati Y. Milson R., “Extended Krein-Adler Theorem For the Translationally Shape Invariant Potentials”, J. Math. Phys., 55:4 (2014), 043510  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
  18. Kh. K. Ishkin, “On analytic properties of Weyl function of Sturm–Liouville operator with a decaying complex potential”, Ufa Math. J., 5:1 (2013), 36–55  mathnet  crossref  mathscinet  elib
  19. Ryu Sasaki, Kouchi Takemura, “Global Solutions of Certain Second-Order Differential Equations with a High Degree of Apparent Singularity”, SIGMA, 8 (2012), 085, 18 pp.  mathnet  crossref  mathscinet
  20. Demina M.V. Kudryashov N.A., “Point Vortices and Classical Orthogonal Polynomials”, Regul. Chaotic Dyn., 17:5 (2012), 371–384  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
Previous
1
2
3
Next