1. Patrick Dorey, Clare Dunning, Roberto Tateo, Encyclopedia of Mathematical Physics, 2025, 145  crossref
  2. A. A. Golubkov, “Kvazibezmonodromnye sistemy differentsialnykh uravnenii pervogo poryadka s parametrom”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 225, VINITI RAN, M., 2023, 59–68  mathnet  crossref
  3. Sarbarish Chakravarty, Michael Zowada, “Multi-lump wave patterns of KPI via integer partitions”, Physica D: Nonlinear Phenomena, 446 (2023), 133644  crossref
  4. Riccardo Conti, Davide Masoero, “On Solutions of the Bethe Ansatz for the Quantum KdV Model”, Commun. Math. Phys., 402:1 (2023), 335  crossref
  5. Xue-Wei Yan, Haie Long, Yong Chen, “Prediction of general high-order lump solutions in the Davey–Stewartson II equation”, Proc. R. Soc. A., 479:2280 (2023)  crossref
  6. Guangxiong Zhang, Peng Huang, Bao-Feng Feng, Chengfa Wu, “Rogue Waves and Their Patterns in the Vector Nonlinear Schrödinger Equation”, J Nonlinear Sci, 33:6 (2023)  crossref
  7. Hussin V., Marquette I., Zelaya K., “Third-Order Ladder Operators, Generalized Okamoto and Exceptional Orthogonal Polynomials”, J. Phys. A-Math. Theor., 55:4 (2022), 045205  crossref  isi
  8. Bo Yang, Jianke Yang, “Pattern Transformation in Higher-Order Lumps of the Kadomtsev–Petviashvili I Equation”, J Nonlinear Sci, 32:4 (2022)  crossref
  9. A. A. Golubkov, “Monodromy-Quasifree Singular Points of the Sturm–Liouville Equation of Standard Form on the Complex Plane”, Diff Equat, 58:8 (2022), 1021  crossref
  10. Sarbarish Chakravarty, Michael Zowada, “Classification of KPI lumps”, J. Phys. A: Math. Theor., 55:21 (2022), 215701  crossref
  11. Codruţ Grosu, Corina Grosu, “The Expansion of Wronskian Hermite Polynomials in the Hermite Basis”, SIGMA, 17 (2021), 003, 14 pp.  mathnet  crossref
  12. Conti R., Masoero D., “Counting Monster Potentials”, J. High Energy Phys., 2021, no. 2, 59  crossref  isi
  13. A. A. Golubkov, “Inverse problem for the Sturm–Liouville equation with piecewise entire potential and piecewise constant weight on a curve”, Sib. elektron. matem. izv., 18:2 (2021), 951–974  mathnet  crossref
  14. Kudryashov N.A., “Generalized Hermite Polynomials For the Burgers Hierarchy and Point Vortices”, Chaos Solitons Fractals, 151 (2021), 111256  crossref  isi
  15. Grosu C. Grosu C., “The Irreducibility of Some Wronskian Hermite Polynomials”, Indag. Math.-New Ser., 32:2 (2021), 456–497  crossref  isi
  16. Gomez-Ullate D. Grandati Y. Milson R., “Complete Classification of Rational Solutions of a(2N)-Painleve Systems”, Adv. Math., 385 (2021), 1077707  crossref  isi
  17. Chalifour V. Grundland A.M., “General Solution of the Exceptional Hermite Differential Equation and Its Minimal Surface Representation”, Ann. Henri Poincare, 21:10 (2020), 3341–3384  crossref  isi
  18. Kasman A., Milson R., “The Adelic Grassmannian and Exceptional Hermite Polynomials”, Math. Phys. Anal. Geom., 23:4 (2020), 40  crossref  isi
  19. Clarkson P.A. Gomez-Ullate D. Grandati Y. Milson R., “Cyclic Maya Diagrams and Rational Solutions of Higher Order Painleve Systems”, Stud. Appl. Math., 144:3 (2020), 357–385  crossref  isi
  20. Bonneux N. Dunning C. Stevens M., “Coefficients of Wronskian Hermite Polynomials”, Stud. Appl. Math., 144:3 (2020), 245–288  crossref  isi
1
2
3
Next