-
K. S. Matviichuk, “Method of $m$-particle density matrices of the canonical ensemble in the description of states of quantum systems”, Theoret. and Math. Phys., 27:3 (1976), 539–548
-
Yu. G. Pogorelov, “Convergence of the virial expansion for the classical canonical ensemble”, Theoret. and Math. Phys., 24:2 (1975), 808–812
-
G. I. Nazin, “Limit distribution functions of systems with many-particle interaction in classical statistical physics”, Theoret. and Math. Phys., 25:1 (1975), 1029–1035
-
K. S. Matviichuk, “Reduced density matrices with nonzero boundary conditions in the case of a hard core”, Theoret. and Math. Phys., 18:3 (1974), 293–304
-
N. K. Bolotin, Yu. P. Yudkin, “Integral equations for equilibrium distribution functions”, Theoret. and Math. Phys., 21:1 (1974), 1035–1039
-
G. I. Nazin, “Limit distribution functions in classical statistical physics”, Theoret. and Math. Phys., 21:3 (1974), 1223–1233
-
K. S. Matviichuk, “Bose-Einstein and Fermi-Dirac systems and reduced density matrices with nonzero boundary conditions”, Ukr Math J, 25:3 (1974), 246
-
Ya. G. Sinai, “Construction of dynamics in one-dimensional systems of statistical mechanics”, Theoret. and Math. Phys., 11:2 (1972), 487–494
-
Ya. G. Sinai, “Gibbs measures in ergodic theory”, Russian Math. Surveys, 27:4 (1972), 21–69
-
K. S. Matviichuk, “Dependence of reduced density matrices on the boundary conditions”, Theoret. and Math. Phys., 10:1 (1972), 56–66
-
R. A. Minlos, A. Khaitov, “Equivalence in the limit of thermodynamic ensembles in the case of one-dimensional classical systems”, Funct. Anal. Appl., 6:4 (1972), 337–338
-
I. L. Simyatitskii, “Comments on the paper “Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism” by N. N. Bogolyubov, D. Ya. Petrina, and B. I. Khatset”, Theoret. and Math. Phys., 6:2 (1971), 169–174
-
D. Ya. Petrina, V. I. Skripnik, “Kirkwood–Salzburg equations for the coefficient functions of the $S$ matrix”, Theoret. and Math. Phys., 8:3 (1971), 896–904
-
F. A. Berezin, “Relationships between the correlation functions in classical statistical physics”, Theoret. and Math. Phys., 3:1 (1971), 386–394