1. K. S. Matviichuk, “Method of $m$-particle density matrices of the canonical ensemble in the description of states of quantum systems”, Theoret. and Math. Phys., 27:3 (1976), 539–548  mathnet  crossref  mathscinet
  2. Yu. G. Pogorelov, “Convergence of the virial expansion for the classical canonical ensemble”, Theoret. and Math. Phys., 24:2 (1975), 808–812  mathnet  crossref  mathscinet  zmath
  3. G. I. Nazin, “Limit distribution functions of systems with many-particle interaction in classical statistical physics”, Theoret. and Math. Phys., 25:1 (1975), 1029–1035  mathnet  crossref  mathscinet  zmath
  4. K. S. Matviichuk, “Reduced density matrices with nonzero boundary conditions in the case of a hard core”, Theoret. and Math. Phys., 18:3 (1974), 293–304  mathnet  crossref  mathscinet
  5. N. K. Bolotin, Yu. P. Yudkin, “Integral equations for equilibrium distribution functions”, Theoret. and Math. Phys., 21:1 (1974), 1035–1039  mathnet  crossref  mathscinet  zmath
  6. G. I. Nazin, “Limit distribution functions in classical statistical physics”, Theoret. and Math. Phys., 21:3 (1974), 1223–1233  mathnet  crossref  mathscinet  zmath
  7. K. S. Matviichuk, “Bose-Einstein and Fermi-Dirac systems and reduced density matrices with nonzero boundary conditions”, Ukr Math J, 25:3 (1974), 246  crossref
  8. Ya. G. Sinai, “Construction of dynamics in one-dimensional systems of statistical mechanics”, Theoret. and Math. Phys., 11:2 (1972), 487–494  mathnet  crossref  mathscinet
  9. Ya. G. Sinai, “Gibbs measures in ergodic theory”, Russian Math. Surveys, 27:4 (1972), 21–69  mathnet  crossref  mathscinet  zmath
  10. K. S. Matviichuk, “Dependence of reduced density matrices on the boundary conditions”, Theoret. and Math. Phys., 10:1 (1972), 56–66  mathnet  crossref  mathscinet
  11. R. A. Minlos, A. Khaitov, “Equivalence in the limit of thermodynamic ensembles in the case of one-dimensional classical systems”, Funct. Anal. Appl., 6:4 (1972), 337–338  mathnet  crossref  mathscinet
  12. I. L. Simyatitskii, “Comments on the paper “Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism” by N. N. Bogolyubov, D. Ya. Petrina, and B. I. Khatset”, Theoret. and Math. Phys., 6:2 (1971), 169–174  mathnet  crossref
  13. D. Ya. Petrina, V. I. Skripnik, “Kirkwood–Salzburg equations for the coefficient functions of the $S$ matrix”, Theoret. and Math. Phys., 8:3 (1971), 896–904  mathnet  crossref
  14. F. A. Berezin, “Relationships between the correlation functions in classical statistical physics”, Theoret. and Math. Phys., 3:1 (1971), 386–394  mathnet  crossref
Previous
1
2
3