1. N. S. Gonchar, “Solvability of a class of systems of infinite-dimensional integral equations and their application in statistical mechanics”, Theoret. and Math. Phys., 64:3 (1985), 949–959  mathnet  crossref  mathscinet  isi
  2. N. S. Kasimov, G. I. Nazin, “Projection method of solving the Bogolyubov equation for the generating functional in classical statistical physics”, Soviet Physics Journal, 27:4 (1984), 342  crossref
  3. G. I. Nazin, “Method of the generating functional”, J. Soviet Math., 31:2 (1985), 2859–2886  mathnet  mathnet  crossref
  4. D. Ya. Petrina, V. I. Gerasimenko, “A mathematical description of the evolution of the state of infinite systems of classical statistical mechanics”, Russian Math. Surveys, 38:5 (1983), 1–61  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  5. N. S. Gonchar, “Equations for Bogolyubov's reduced distribution functions and their solution for arbitrary values of the particle density”, Theoret. and Math. Phys., 57:1 (1983), 1007–1014  mathnet  crossref  mathscinet  isi
  6. K. S. Matviichuk, “Conditions of existence and stability of a solution of singular Kirkwood–Salsburg equations. Part III”, Theoret. and Math. Phys., 51:1 (1982), 372–381  mathnet  crossref  mathscinet  isi
  7. V. A. Zagrebnov, “A new proof and generalization of the Bogolyubov–Ruelle theorem”, Theoret. and Math. Phys., 51:3 (1982), 570–579  mathnet  crossref  mathscinet  isi
  8. K. S. Matviichuk, “Conditions of existence and stability of a solution of singular Kirkwood–Salsburg equations. Parts I and II”, Theoret. and Math. Phys., 49:1 (1981), 887–896  mathnet  crossref  mathscinet  isi
  9. V. A. Malyshev, “Cluster expansions in lattice models of statistical physics and the quantum theory of fields”, Russian Math. Surveys, 35:2 (1980), 1–62  mathnet  crossref  mathscinet  adsnasa  isi
  10. G. I. Nazin, “Topological structure of the family of solutions of the Bogolyubov equation”, Theoret. and Math. Phys., 42:2 (1980), 159–166  mathnet  crossref  mathscinet  isi
  11. P. V. Malyshev, “Mathematical description of the evolution of an infinite classical system”, Theoret. and Math. Phys., 44:1 (1980), 603–611  mathnet  crossref  mathscinet  isi
  12. K. S. Matviichuk, “Mathematical description of the states of bose and fermi systems by the method of partial density matrices of the canonical ensemble”, Theoret. and Math. Phys., 41:3 (1979), 1067–1079  mathnet  crossref  mathscinet  isi
  13. D. Ya. Petrina, “Mathematical description of the evolution of infinite systems of classical statistical physics. I. Locally perturbed one-dimensional systems”, Theoret. and Math. Phys., 38:2 (1979), 153–166  mathnet  crossref  mathscinet
  14. N. V. Glukhikh, G. I. Nazin, “Equivalence of Gibbs ensembles and the problem of phase transitions in classical statistical physics”, Theoret. and Math. Phys., 38:3 (1979), 276–278  mathnet  mathnet  crossref
  15. Yu. R. Dashyan, “Equivalence of the canonical and grand canonical ensembles for one-dimensional systems of quantum statistical mechanics”, Theoret. and Math. Phys., 34:3 (1978), 217–224  mathnet  crossref
  16. A. K. Vidybida, “Local perturbations of translationally invariant solutions of the Bogolyubov (BBGKY) hierarchy”, Theoret. and Math. Phys., 34:1 (1978), 62–69  mathnet  crossref  mathscinet
  17. G. I. Kalmykov, “Thermodynamic limit for a classical system of particles with hard cores”, Theoret. and Math. Phys., 36:1 (1978), 617–623  mathnet  crossref  mathscinet
  18. V. A. Zagrebnov, L. A. Pastur, “Singular interaction potentials in classical statistical mechanics”, Theoret. and Math. Phys., 36:3 (1978), 784–797  mathnet  crossref  mathscinet
  19. N. N. Bogolyubov (Jr.), D. Ya. Petrina, “On a class of model systems that admit a lowering of powers in the Hamiltonian in the thermodynamic limit. II”, Theoret. and Math. Phys., 37:2 (1978), 998–1005  mathnet  crossref  mathscinet
  20. Yu. G. Pogorelov, “Cluster property in a classical canonical ensemble”, Theoret. and Math. Phys., 30:3 (1977), 227–232  mathnet  crossref  mathscinet  zmath
Previous
1
2
3
Next