-
M B Zvonarev, V V Cheianov, T Giamarchi, “The time-dependent correlation function of the Jordan–Wigner operator as a Fredholm determinant”, J. Stat. Mech., 2009:07 (2009), P07035
-
N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Riemann–Hilbert Approach to a Generalised Sine Kernel and Applications”, Commun. Math. Phys., 291:3 (2009), 691
-
Jacques H. H. Perk, Helen Au-Yang, “New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain”, J Stat Phys, 135:4 (2009), 599
-
N. A. Slavnov, “The algebraic Bethe ansatz and quantum integrable systems”, Russian Math. Surveys, 62:4 (2007), 727–766
-
Sakai, K, “Dynamical correlation functions of the XXZ model at finite temperature”, Journal of Physics A-Mathematical and Theoretical, 40:27 (2007), 7523
-
D. B. Abraham, F. H. L. Essler, A. Maciołek, “Effective Forces Induced by a Fluctuating Interface: Exact Results”, Phys. Rev. Lett., 98:17 (2007)
-
Michael Bortz, Jun Sato, Masahiro Shiroishi, “String correlation functions of the spin-1/2 HeisenbergXXZchain”, J. Phys. A: Math. Theor., 40:16 (2007), 4253
-
N Kitanine, K Kozlowski, J M Maillet, N A Slavnov, V Terras, “On correlation functions of integrable models associated with the six-vertexR-matrix”, J. Stat. Mech., 2007:01 (2007), P01022
-
N. M. Bogolyubov, “Integrable models for the vicious and friendly walkers”, J. Math. Sci. (N. Y.), 143:1 (2007), 2729–2737
-
Pogrebkov A.K., “Hierarchy of quantum explicitly solvable and integrable models”, Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 201, 2006, 231–244
-
A.K. Pogrebkov, NATO Science Series, 201, Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 2006, 231
-
N. Kitanine, J.M. Maillet, N.A. Slavnov, V. Terras, “Dynamical correlation functions of the spin- chain”, Nuclear Physics B, 729:3 (2005), 558
-
N. Kitanine, J.M. Maillet, N.A. Slavnov, V. Terras, “Master equation for spin–spin correlation functions of the chain”, Nuclear Physics B, 712:3 (2005), 600
-
K. L. Malyshev, “The condition of quasi-periodicity in imaginary time as a constraint at the functional integration and the time-dependent ZZ-correlator of the XX Heisenberg magnet”, J. Math. Sci. (N. Y.), 136:1 (2006), 3607–3624
-
N. A. Slavnov, “Emptiness Formation Probability in the Spin-1/2 $XXZ$ Heisenberg Chain”, Theoret. and Math. Phys., 139:1 (2004), 529–535
-
Hans-Jürgen Mikeska, Alexei K. Kolezhuk, Lecture Notes in Physics, 645, Quantum Magnetism, 2004, 1
-
N. KITANINE, J. M. MAILLET, N. A. SLAVNOV, V. TERRAS, “CORRELATION FUNCTIONS OF THE XXZ SPIN-½ HEISENBERG CHAIN: RECENT ADVANCES (REVIEW)”, Int. J. Mod. Phys. A, 19:supp02 (2004), 248
-
K. L. Malyshev, “Functional Integration with an “Automorphic” Boundary Condition and Correlators of Third Components of Spins in the $XX$ Heisenberg Model”, Theoret. and Math. Phys., 136:2 (2003), 1143–1154
-
A. K. Pogrebkov, “Boson-fermion correspondence and quantum integrable and dispersionless models”, Russian Math. Surveys, 58:5 (2003), 1003–1037
-
N. I. Abarenkova, A. G. Pronko, “Temperature Correlation Function in the Absolutely Anisotropic XXZ Heisenberg Magnet”, Theoret. and Math. Phys., 131:2 (2002), 690–703