1. Mario Collura, Fabian H L Essler, Stefan Groha, “Full counting statistics in the spin-1/2 Heisenberg XXZ chain”, J. Phys. A: Math. Theor., 50:41 (2017), 414002  crossref
  2. Makoto Inoue, “Integral formulae of the canonical correlation functions for the one dimensional transverse Ising model”, Physica A: Statistical Mechanics and its Applications, 488 (2017), 46  crossref
  3. Gamayun O., Pronko A.G., Zvonarev M.B., “Impurity Green's Function of a One-Dimensional Fermi Gas”, Nucl. Phys. B, 892 (2015), 83–104  crossref  isi
  4. Patu O.I., “Correlation Functions and Momentum Distribution of One-Dimensional Hard-Core Anyons in Optical Lattices”, J. Stat. Mech.-Theory Exp., 2015, P01004  crossref  isi
  5. N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  6. Gunter M. Schütz, Springer Proceedings in Mathematics & Statistics, 129, From Particle Systems to Partial Differential Equations II, 2015, 371  crossref
  7. Gunter M. Schütz, Springer Proceedings in Physics, 163, Nonlinear Mathematical Physics and Natural Hazards, 2015, 13  crossref
  8. Bogoliubov N.M. Malyshev C., “Correlation Functions of Xxo Heisenberg Chain, Q-Binomial Determinants, and Random Walks”, Nucl. Phys. B, 879 (2014), 268–291  crossref  isi
  9. David Pérez-García, Miguel Tierz, “Mapping between the Heisenberg XX Spin Chain and Low-Energy QCD”, Phys. Rev. X, 4:2 (2014)  crossref
  10. Kitanine N., Kozlowski K.K., Maillet J.M., Slavnov N.A., Terras V., “Form Factor Approach to Dynamical Correlation Functions in Critical Models”, J. Stat. Mech.-Theory Exp., 2012, P09001  crossref  isi
  11. N. M. Bogolyubov, K. L. Malyshev, “Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions”, Theoret. and Math. Phys., 169:2 (2011), 1517–1529  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  12. Kozlowski K.K., Terras V., “Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schrodinger model”, J Stat Mech Theory Exp, 2011, P09013  isi
  13. V. Popkov, G. M. Schütz, “Transition Probabilities and Dynamic Structure Function in the ASEP Conditioned on Strong Flux”, J Stat Phys, 142:3 (2011), 627  crossref
  14. Bo Li, Yan Shen Wang, “Entanglement and elementary excitations in quantum spin chain”, Physica B: Condensed Matter, 406:11 (2011), 2308  crossref
  15. N Kitanine, K K Kozlowski, J M Maillet, N A Slavnov, V Terras, “A form factor approach to the asymptotic behavior of correlation functions in critical models”, J. Stat. Mech., 2011:12 (2011), P12010  crossref
  16. K K Kozlowski, V Terras, “Long-time and large-distance asymptotic behavior of the current–current correlators in the non-linear Schrödinger model”, J. Stat. Mech., 2011:09 (2011), P09013  crossref
  17. N. M. Bogoliubov, K. Malyshev, “The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers”, St. Petersburg Math. J., 22:3 (2011), 359–377  mathnet  crossref  mathscinet  zmath  isi
  18. N. A. Slavnov, “Integral operators with the generalized sine kernel on the real axis”, Theoret. and Math. Phys., 165:1 (2010), 1262–1274  mathnet  crossref  crossref  adsnasa  isi
  19. Vladislav Popkov, Gunter M Schütz, Damien Simon, “ASEP on a ring conditioned on enhanced flux”, J. Stat. Mech., 2010:10 (2010), P10007  crossref
  20. N. M. Bogolyubov, K. L. Malyshev, “Correlation functions of the XX Heisenberg magnet and random walks of vicious walkers”, Theoret. and Math. Phys., 159:2 (2009), 563–574  mathnet  crossref  crossref  mathscinet  adsnasa  isi
Previous
1
2
3
4
Next