-
Perera F., Toms A., White S., Winter W., “The Cuntz Semigroup and Stability of Close $C^*$-Algebras”, Anal. PDE, 7:4 (2014), 929–952
-
Li W., “The Similarity Degree of Approximately Divisible $C^*$-Algebras”, Oper. Matrices, 7:2 (2013), 425–430
-
Johanesova M., Winter W., “The Similarity Problem for Z-Stable $C^*$-Algebras”, Bull. London Math. Soc., 44:Part 6 (2012), 1215–1220
-
Wu J., Wu W., Wang L., “On Similarity Degrees of Finite Von Neumann Algebras”, Taiwan. J. Math., 16:6 (2012), 2275–2287
-
Juschenko K., “Ideals of a C*-algebra generated by an operator algebra”, Mathematische Zeitschrift, 266:3 (2010), 693–705
-
Brannan M., Samei E., “The similarity problem for Fourier algebras and corepresentations of group von Neumann algebras”, Journal of Functional Analysis, 259:8 (2010), 2073–2097
-
Christensen E., Sinclair A., Smith R.R., White S., “Perturbations of C*-Algebraic Invariants”, Geometric and Functional Analysis, 20:2 (2010), 368–397
-
Neufang M., Ruan Zhong-Jin, Spronk N., “Completely isometric representations of $M_{\mathrm{cb}}A(G)$ and $\mathrm{UCB}(\hat G)$”, Trans. Amer. Math. Soc., 360:3 (2008), 1133–1161
-
Pisier G., “Simultaneous similarity, bounded generation and amenability”, Tohoku Math. J. (2), 59:1 (2007), 79–99
-
Pisier G., “A similarity degree characterization of nuclear $C^*$-algebras”, Publ. Res. Inst. Math. Sci., 42:3 (2006), 691–704
-
Hadwin D., Paulsen V., “Two reformulations of Kadison's similarity problem”, J. Operator Theory, 55:1 (2006), 3–16
-
Pop F., “The similarity problem for tensor products of certain $C^*$-algebras”, Bull. Austral. Math. Soc., 70:3 (2004), 385–389
-
Spronk N., “Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras”, Proc. London Math. Soc. (3), 89 (2004), 161–192
-
Christensen E., “On some problems studied by R. V. Kadison”, Acta Math. Sin. (Engl. Ser.), 19:3 (2003), 523–534
-
Ricard É., “A tensor norm for Q-spaces”, J. Operator Theory, 48:2 (2002), 431–445
-
Christensen E., “Finite von Neumann algebra factors with property $\Gamma$”, J. Funct. Anal., 186:2 (2001), 366–380
-
Pisier G., “Remarks on the similarity degree of an operator algebra”, Internat. J. Math., 12:4 (2001), 403–414
-
Pisier G., “Similarity problems and length”, Taiwanese J. Math., 5:1 (2001), 1–17
-
Le Merdy C., “A strong similarity property of nuclear $C^*$-algebras”, Rocky Mountain J. Math., 30:1 (2000), 279–292
-
Le Merdy C., “The weak$^*$ similarity property on dual operator algebras”, Integral Equations Operator Theory, 37:1 (2000), 72–94