1. Gerasimova M., Gruber D., Monod N., Thom A., “Asymptotics of Cheeger Constants and Unitarisability of Groups”, J. Funct. Anal., 278:11 (2020), UNSP 108457  crossref  isi
  2. Clouatre R., Marcoux L.W., “Compact Ideals and Rigidity of Representations For Amenable Operator Algebras”, Studia Math., 244:1 (2019), 25–41  crossref  mathscinet  zmath  isi
  3. Brannan M., Youn S.-G., “On the Similarity Problem For Locally Compact Quantum Groups”, J. Funct. Anal., 276:4 (2019), 1313–1337  crossref  mathscinet  isi  scopus
  4. Lee H.H., Samei E., Spronk N., “Similarity Degree of Fourier Algebras (Vol 271, Pg 593, 2016)”, J. Funct. Anal., 277:3 (2019), 958–964  crossref  isi
  5. Roydor J., “Dual Operator Algebras Close to Injective Von Neumann Algebras”, Pac. J. Math., 293:2 (2018), 407–426  crossref  mathscinet  zmath  isi  scopus
  6. Hadwin D., Qian W., Shen J., “Similarity Degree of Type II1 Von Neumann Algebras With Property Gamma”, J. Operat. Theor., 79:2 (2018), 269–285  crossref  mathscinet  zmath  isi  scopus
  7. Miglioli M., Schlicht P., “Geometric Spects a of Similarity Problems”, Int. Math. Res. Notices, 2018, no. 23, 7171–7197  crossref  mathscinet  isi  scopus
  8. Pisier G., “On a Linearization Trick”, Enseign. Math., 64:3-4 (2018), 315–326  crossref  isi
  9. Pop F., “Similarities of Tensor Products of Type II1 Factors”, Integr. Equ. Oper. Theory, 89:3 (2017), 455–463  crossref  mathscinet  zmath  isi  scopus
  10. Qian W., Shen J., “Similarity Degree of a Class of $C^*$-Algebras”, Integr. Equ. Oper. Theory, 84:1 (2016), 121–149  crossref  mathscinet  zmath  isi  scopus
  11. Lee H.H., Samei E., Spronk N., “Similarity degree of Fourier algebras”, J. Funct. Anal., 271:3 (2016), 593–609  crossref  mathscinet  zmath  isi  scopus
  12. Marcoux L.W., Popov A.I., “Abelian, amenable operator algebras are similar to $C^{*}$ -algebras”, Duke Math. J., 165:12 (2016), 2391–2406  crossref  mathscinet  zmath  isi  scopus
  13. Qian W.H., Hadwin D., “Universal $C^*$-Algebras Defined By Completely Bounded Unital Homomorphisms”, Acta. Math. Sin.-English Ser., 31:12 (2015), 1825–1844  crossref  mathscinet  zmath  isi
  14. Wang LiGuang, “on the Properties of Some Sets of Von Neumann Algebras Under Perturbation”, Sci. China-Math., 58:8 (2015), 1707–1714  crossref  mathscinet  zmath  isi  scopus
  15. Cameron J., Christensen E., Sinclair A.M., Smith R.R., White S., Wiggins A.D., “Kadison-Kastler Stable Factors”, Duke Math. J., 163:14 (2014), 2639–2686  crossref  mathscinet  zmath  isi  scopus
  16. Dong Zh., Zhao Ya.F., “A Weak Similarity Degree Characterization For Injective Von Neumann Algebras”, Acta. Math. Sin.-English Ser., 30:10 (2014), 1689–1697  crossref  mathscinet  zmath  isi  scopus
  17. Ricard E., Roydor J., “A Noncommutative Amir-Cambern Theorem For Von Neumann Algebras and Nuclear $C^*$-Algebras”, J. Funct. Anal., 267:4 (2014), 1121–1136  crossref  mathscinet  zmath  isi  scopus
  18. Dickson L., “A Kadison-Kastler Row Metric and Intermediate Subalgebras”, Int. J. Math., 25:8 (2014), 1450082  crossref  mathscinet  zmath  isi  scopus
  19. Wu J.S., Wu W.M., “Similarity Degrees For the Crossed Product of Von Neumann Algebras”, Acta. Math. Sin.-English Ser., 30:5 (2014), 723–736  crossref  mathscinet  zmath  isi  scopus
  20. Hadwin D., Li W., “The Similarity Degree of Some $C^*$-Algebras”, Bull. Aust. Math. Soc., 89:1 (2014), 60–69  crossref  mathscinet  zmath  isi  scopus
1
2
3
Next