Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 8, Pages 1314–1328
DOI: https://doi.org/10.7868/S0044466913080139
(Mi zvmmf9903)
 

This article is cited in 8 scientific papers (total in 8 papers)

Flux-splitting schemes for parabolic equations with mixed derivatives

P. N. Vabishchevichab

a Nuclear Safety Institute, RAS
b North-Eastern Federal University named after M. K. Amosov
Full-text PDF (266 kB) Citations (8)
References:
Abstract: Difference schemes of required quality are often difficult to construct as applied to boundary value problems for parabolic equations with mixed derivatives. Specifically, difficulties arise in the design of monotone difference schemes and unconditionally stable locally one-dimensional splitting schemes. In parabolic problems, certain opportunities are offered by restating the problem in question so that the quantities to be determined are fluxes (directional derivatives). The original problem is then rewritten as a boundary value one for a system of equations in flux variables. Weighted schemes for parabolic equations in flux coordinates are examined. Unconditionally stable locally one-dimensional flux schemes that are first- and second-order accurate in time are constructed for a parabolic equation without mixed derivatives. A feature of systems in flux variables for equations with mixed derivatives is that the terms with time derivatives are coupled with each other.
Key words: Cauchy problem, parabolic equation with mixed derivatives, operator-difference schemes, splitting schemes.
Received: 03.05.2012
Revised: 13.03.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 8, Pages 1139–1152
DOI: https://doi.org/10.1134/S0965542513080137
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: P. N. Vabishchevich, “Flux-splitting schemes for parabolic equations with mixed derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 53:8 (2013), 1314–1328; Comput. Math. Math. Phys., 53:8 (2013), 1139–1152
Citation in format AMSBIB
\Bibitem{Vab13}
\by P.~N.~Vabishchevich
\paper Flux-splitting schemes for parabolic equations with mixed derivatives
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 8
\pages 1314--1328
\mathnet{http://mi.mathnet.ru/zvmmf9903}
\crossref{https://doi.org/10.7868/S0044466913080139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3255258}
\elib{https://elibrary.ru/item.asp?id=19569105}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 8
\pages 1139--1152
\crossref{https://doi.org/10.1134/S0965542513080137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323626600009}
\elib{https://elibrary.ru/item.asp?id=20453365}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883077941}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9903
  • https://www.mathnet.ru/eng/zvmmf/v53/i8/p1314
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025